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Agenda

 Jarvis overview

 Case studies and evolution with intermingled demos
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 Lets ask Anthropic's Claude
 How about Google's Gemini?
 JSON and REST service (vis)
 APL-based web service framework supporting 2 paradigms

 JSON – just like calling an APL function

 REST – for the management of resources

 Nearly every new Dyalog APL project uses Jarvis

What is Jarvis?
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A web service is a standardized way for applications to 
communicate and exchange data over a network, typically the 
internet. It allows different systems, built on various 
programming languages and platforms, to interact seamlessly.

Web Service
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It started as a simple concept

APL! APL?

[1,2,3,4,5]
JSONJSONServer

http://someurl/sum

1 2 3 4 5
APL

sum←{+/⍵} 15 15
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 Anything that can send and receive HTTP messages
 Phone app

 Browser/JavaScript

 C#

 Python

 Even APL

Clients
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 Jarvis doesn't do UI – it returns a data payload

 There are a bazillion frameworks to develop UI

 There are far more non-APL resources available to do UI

 Jarvis and EWC give you options on how much and what 
sort of UI you need to develop

Let the UI experts do the UI



The Many Faces of Jarvis13

Quick Demo
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 Guess what? People are creative…
 Can you make it do REST?

 Can it serve HTML and other static content?

 Can I use it to upload files?

 Etc, etc, etc

 So, we added features and functionality

Then people started using it…
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REST (Representational State Transfer) is an architectural style for 
designing networked applications. It uses a stateless, client-server 
communication protocol, typically HTTP, to interact with resources. 
RESTful APIs rely on standard HTTP methods, like:

 GET: Retrieve data.
 POST: Create new data.
 PUT: Update or create data.
 DELETE: Remove data.
 PATCH: Partially update data.

Take a REST
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Adding REST support

 In REST mode, Jarvis manages "resources"

 Resource is specified in the request URL
https://abc.com/customers/ID

 Action is specified by the HTTP method

JSONServer becomes Jarvis

Method Action
GET Read
POST Create or Update
PUT Replace
PATCH Partial update
DELETE Remove

https://abc.com/customers/ID
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JSON

Endpoints are APL functions
∇ r←GetCustomer ID

REST
Endpoints are resources

https:/abc.com/customers/ID

Write a function for each HTTP 
method you want to support

The function parses the request to 
determine the resource and acts 
appropriate for the HTTP method

JSON vs REST
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Many web service APIs (application programming interfaces) 
use REST

 GitHub, Google, many LLMs (OpenAI, Anthropic, Google 
Gemini)

 Designing a REST API takes some thought to get it right

To REST or not to REST?



The Many Faces of Jarvis19

 DCMS is Dyalog's content management system that 
supplies data for the Dyalog website and video library

 Rich Park is using Jarvis' REST paradigm to provide an API 
to manage the data

DCMS
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 A customer in Denmark uses Jarvis in JSON mode
 It has a user interface developed in React (a popular JavaScript library)

 It also exposes endpoints called directly (application to application)

 Added new PostProcessFn "hook" function

Portfolio and Risk Management
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 Functions the user can specify to inject behavior at specific points in 
Jarvis' flow
 AppCloseFn – when Jarvis is ending

 AppInitFn – before Jarvis starts

 AuthenticateFn – performs authentication on every request

 PostProcessFn – after your endpoint has run, but before Jarvis responds

 SessionInitFn – initializes a session, if using sessions

 ValidateRequestFn – called on every request before any other processing

"Hook" functions
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Quick Demo
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 qWC is a product developed by Michael Hughes

 Michael needed to be able to serve up "static" content like 
CSS

 HTMLInterface setting originally only controlled 
whether Jarvis' internal demo page was active

 You can now specify a file or folder that contains HTML, 
CSS, JavaScript, image files, etc.

qWC and HTMLInterface
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 Originally implemented in 2012 using MiServer

 Rewritten to use Jarvis in 2021

TryAPL
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Jay Whipple is very involved with the ACBL (American Contract 
Bridge League) and uses Jarvis for 3 applications:

 Shark – implements the integration of game management and a 
remote third party game engine

 BridgeWar – a third party needed privileged access to ACBL 
player information. API took 30 minutes to set up

 ACBL Results Gateway – ACBL uploads hundreds of game files 
daily which are then validated and game results returned.

ACBL
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 Mark and Dexter used Jarvis to speed development of new 
dashboard capabilities, cutting development time to a 
fraction of what was able to be done in C#.

BIG
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 Continuous Integration Testing in APL

 Uses Jarvis for its dashboard functions

CITA
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 Problem: A client in needed to run thousands of scenarios, 
each taking a non-trivial amount of time.

 Solution: Have one Jarvis act as a load-balancer for 20 
other Jarvis instances, using HttpCommand to forward 
requests. Implemented a polling mechanism to see when 
results were ready.

Multi-tiered Jarvis
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...
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Holden has developed 2 Jarvis applications:
 His APL Forge winning Radar Ingest System (RIS) application that ingests airplane 

tracking data (emitted by airplanes in the air) from an array of antennas (that could 
be located around the world). This application used Jarvis for its GUI and Web API to 
view the data collected. 

 STARAPL is an application he developed for a school voting system, to let people login 
with their school email accounts (Google Account OAuth) and then vote on various 
options (using the STAR Voting Method). After everyone voted, the results could then be 
calculated and displayed. STARAPL used Jarvis for the Web UI (which was available on the 
"public internet" while the poll was open). STARAPL also did have an API as well, for the 
Web UI to interact with. 

Holden Hoover

https://en.wikipedia.org/wiki/STAR_voting
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The Plan Visualized… (from Dyalog'22)
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The Plan Visualized…

Database

App

In the beginning, there was an Application…
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Jarvis

Run the app as a service

Database

App
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Docker Container

Jarvis

Run it in a container

Database

App
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Split into Front and Back Ends

Database

Write Operations

Read Operations

Front End

Back End

We'll call this "Two-Tier"
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"The Cloud" (AWS)

Try it in the cloud

Database

Write Operations

Read Operations
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"The Cloud" (AWS)

Scale it up

Database

Write Operations

Read Operations
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"The Cloud" (AWS)

Load balance it

Database

Write Operations

Read Operations
Lo

ad
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al
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"The Cloud" (AWS)

Secure it

Database

Write Operations

Read Operations
Lo

ad
 B

al
an

ce
r
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 In general people have found Jarvis flexible and easy to use

 The core design has held up – still at major version 1.

 If you need it to do something – ask!

Takeaways
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