
Dyalog North America - 7 April 2025

The Many Faces of Jarvis

Brian Becker
APL Tools Architect
Dyalog, LTD

The Many Faces of Jarvis1

Agenda

 Jarvis overview

 Case studies and evolution with intermingled demos

The Many Faces of Jarvis2

 Lets ask Anthropic's Claude

What is Jarvis?

The Many Faces of Jarvis3

 Lets ask Anthropic's Claude

What is Jarvis?

The Many Faces of Jarvis4

 Lets ask Anthropic's Claude

What is Jarvis?

The Many Faces of Jarvis5

 Lets ask Anthropic's Claude

What is Jarvis?

The Many Faces of Jarvis6

 Lets ask Anthropic's Claude
 How about Google's Gemini?









What is Jarvis?

The Many Faces of Jarvis7

 Lets ask Anthropic's Claude
 How about Google's Gemini?









What is Jarvis?

The Many Faces of Jarvis8

 Lets ask Anthropic's Claude
 How about Google's Gemini?
 JSON and REST service (vis)
 APL-based web service framework supporting 2 paradigms

 JSON – just like calling an APL function

 REST – for the management of resources

 Nearly every new Dyalog APL project uses Jarvis

What is Jarvis?

The Many Faces of Jarvis9

A web service is a standardized way for applications to
communicate and exchange data over a network, typically the
internet. It allows different systems, built on various
programming languages and platforms, to interact seamlessly.

Web Service

The Many Faces of Jarvis10

It started as a simple concept

APL! APL?

[1,2,3,4,5]
JSONJSONServer

http://someurl/sum

1 2 3 4 5
APL

sum←{+/⍵} 15 15

The Many Faces of Jarvis11

 Anything that can send and receive HTTP messages
 Phone app

 Browser/JavaScript

 C#

 Python

 Even APL

Clients

The Many Faces of Jarvis12

 Jarvis doesn't do UI – it returns a data payload

 There are a bazillion frameworks to develop UI

 There are far more non-APL resources available to do UI

 Jarvis and EWC give you options on how much and what
sort of UI you need to develop

Let the UI experts do the UI

The Many Faces of Jarvis13

Quick Demo

The Many Faces of Jarvis14

 Guess what? People are creative…
 Can you make it do REST?

 Can it serve HTML and other static content?

 Can I use it to upload files?

 Etc, etc, etc

 So, we added features and functionality

Then people started using it…

The Many Faces of Jarvis15

REST (Representational State Transfer) is an architectural style for
designing networked applications. It uses a stateless, client-server
communication protocol, typically HTTP, to interact with resources.
RESTful APIs rely on standard HTTP methods, like:

 GET: Retrieve data.
 POST: Create new data.
 PUT: Update or create data.
 DELETE: Remove data.
 PATCH: Partially update data.

Take a REST

The Many Faces of Jarvis16

Adding REST support

 In REST mode, Jarvis manages "resources"

 Resource is specified in the request URL
https://abc.com/customers/ID

 Action is specified by the HTTP method

JSONServer becomes Jarvis

Method Action
GET Read
POST Create or Update
PUT Replace
PATCH Partial update
DELETE Remove

https://abc.com/customers/ID

The Many Faces of Jarvis17

JSON

Endpoints are APL functions
∇ r←GetCustomer ID

REST
Endpoints are resources

https:/abc.com/customers/ID

Write a function for each HTTP
method you want to support

The function parses the request to
determine the resource and acts
appropriate for the HTTP method

JSON vs REST

The Many Faces of Jarvis18

Many web service APIs (application programming interfaces)
use REST

 GitHub, Google, many LLMs (OpenAI, Anthropic, Google
Gemini)

 Designing a REST API takes some thought to get it right

To REST or not to REST?

The Many Faces of Jarvis19

 DCMS is Dyalog's content management system that
supplies data for the Dyalog website and video library

 Rich Park is using Jarvis' REST paradigm to provide an API
to manage the data

DCMS

The Many Faces of Jarvis20

The Many Faces of Jarvis21

The Many Faces of Jarvis22

The Many Faces of Jarvis23

The Many Faces of Jarvis24

 A customer in Denmark uses Jarvis in JSON mode
 It has a user interface developed in React (a popular JavaScript library)

 It also exposes endpoints called directly (application to application)

 Added new PostProcessFn "hook" function

Portfolio and Risk Management

The Many Faces of Jarvis25

 Functions the user can specify to inject behavior at specific points in
Jarvis' flow
 AppCloseFn – when Jarvis is ending

 AppInitFn – before Jarvis starts

 AuthenticateFn – performs authentication on every request

 PostProcessFn – after your endpoint has run, but before Jarvis responds

 SessionInitFn – initializes a session, if using sessions

 ValidateRequestFn – called on every request before any other processing

"Hook" functions

The Many Faces of Jarvis26

Quick Demo

The Many Faces of Jarvis27

 qWC is a product developed by Michael Hughes

 Michael needed to be able to serve up "static" content like
CSS

 HTMLInterface setting originally only controlled
whether Jarvis' internal demo page was active

 You can now specify a file or folder that contains HTML,
CSS, JavaScript, image files, etc.

qWC and HTMLInterface

The Many Faces of Jarvis28

 Originally implemented in 2012 using MiServer

 Rewritten to use Jarvis in 2021

TryAPL

The Many Faces of Jarvis29

Jay Whipple is very involved with the ACBL (American Contract
Bridge League) and uses Jarvis for 3 applications:

 Shark – implements the integration of game management and a
remote third party game engine

 BridgeWar – a third party needed privileged access to ACBL
player information. API took 30 minutes to set up

 ACBL Results Gateway – ACBL uploads hundreds of game files
daily which are then validated and game results returned.

ACBL

The Many Faces of Jarvis30

 Mark and Dexter used Jarvis to speed development of new
dashboard capabilities, cutting development time to a
fraction of what was able to be done in C#.

BIG

The Many Faces of Jarvis31

 Continuous Integration Testing in APL

 Uses Jarvis for its dashboard functions

CITA

The Many Faces of Jarvis32

 Problem: A client in needed to run thousands of scenarios,
each taking a non-trivial amount of time.

 Solution: Have one Jarvis act as a load-balancer for 20
other Jarvis instances, using HttpCommand to forward
requests. Implemented a polling mechanism to see when
results were ready.

Multi-tiered Jarvis

The Many Faces of Jarvis33

...

The Many Faces of Jarvis34

Holden has developed 2 Jarvis applications:
 His APL Forge winning Radar Ingest System (RIS) application that ingests airplane

tracking data (emitted by airplanes in the air) from an array of antennas (that could
be located around the world). This application used Jarvis for its GUI and Web API to
view the data collected.

 STARAPL is an application he developed for a school voting system, to let people login
with their school email accounts (Google Account OAuth) and then vote on various
options (using the STAR Voting Method). After everyone voted, the results could then be
calculated and displayed. STARAPL used Jarvis for the Web UI (which was available on the
"public internet" while the poll was open). STARAPL also did have an API as well, for the
Web UI to interact with.

Holden Hoover

https://en.wikipedia.org/wiki/STAR_voting

The Many Faces of Jarvis35

The Many Faces of Jarvis36

The Many Faces of Jarvis37

The Many Faces of Jarvis38

The Plan Visualized… (from Dyalog'22)

The Many Faces of Jarvis39

The Plan Visualized…

Database

App

In the beginning, there was an Application…

The Many Faces of Jarvis40

Jarvis

Run the app as a service

Database

App

The Many Faces of Jarvis41

Docker Container

Jarvis

Run it in a container

Database

App

The Many Faces of Jarvis42

Split into Front and Back Ends

Database

Write Operations

Read Operations

Front End

Back End

We'll call this "Two-Tier"

The Many Faces of Jarvis43

"The Cloud" (AWS)

Try it in the cloud

Database

Write Operations

Read Operations

The Many Faces of Jarvis44

"The Cloud" (AWS)

Scale it up

Database

Write Operations

Read Operations

The Many Faces of Jarvis45

"The Cloud" (AWS)

Load balance it

Database

Write Operations

Read Operations
Lo

ad
 B

al
an

ce
r

The Many Faces of Jarvis46

"The Cloud" (AWS)

Secure it

Database

Write Operations

Read Operations
Lo

ad
 B

al
an

ce
r

The Many Faces of Jarvis47

 In general people have found Jarvis flexible and easy to use

 The core design has held up – still at major version 1.

 If you need it to do something – ask!

Takeaways

	Slide 0: The Many Faces of Jarvis
	Slide 1: Agenda
	Slide 2: What is Jarvis?
	Slide 3: What is Jarvis?
	Slide 4: What is Jarvis?
	Slide 5: What is Jarvis?
	Slide 6: What is Jarvis?
	Slide 7: What is Jarvis?
	Slide 8: What is Jarvis?
	Slide 9: Web Service
	Slide 10: It started as a simple concept
	Slide 11: Clients
	Slide 12: Let the UI experts do the UI
	Slide 13
	Slide 14: Then people started using it…
	Slide 15: Take a REST
	Slide 16: JSONServer becomes Jarvis
	Slide 17: JSON vs REST
	Slide 18: To REST or not to REST?
	Slide 19: DCMS
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24: Portfolio and Risk Management
	Slide 25: "Hook" functions
	Slide 26
	Slide 27: qWC and HTMLInterface
	Slide 28: TryAPL
	Slide 29: ACBL
	Slide 30: BIG
	Slide 31: CITA
	Slide 32: Multi-tiered Jarvis
	Slide 33
	Slide 34: Holden Hoover
	Slide 35
	Slide 36
	Slide 37
	Slide 38: The Plan Visualized… (from Dyalog'22)
	Slide 39: The Plan Visualized…
	Slide 40: Run the app as a service
	Slide 41: Run it in a container
	Slide 42: Split into Front and Back Ends
	Slide 43: Try it in the cloud
	Slide 44: Scale it up
	Slide 45: Load balance it
	Slide 46: Secure it
	Slide 47: Takeaways

