OV NA

Dyalog North America Meetup, 11 April 2024

APL and Web Services

Brian Becker
APL Tools Architect
Dyalog, LTD

Web Services

What
Consuming using Ht tpCommand

Providing using Jarvis

Ask questions!

Web Services with Dyalog DOVNA

What is a Web Service?

e Let's ask a web service what a web service is...

Web Services with Dyalog DOVNA

What is a Web Service?

c<OpenAI.Chat.Completion 'you are a helpful assistant' 'what is a web service?’
c.Run

[rc: O | msg: | HTTP Status: 200 "OK" | #Data: 1 (namespace)]
c.Conversation

system you are a helpful assistant

user what is a web service?

assistant|A web service is a software system designed to support
interoperable machine-to-machine interaction over a network.
It allows different applications to communicate with each
other over the internet using standard protocols such as
HTTP. Web services typically provide a way for different
systems to exchange data and perform actions without needing
to know the internal workings of each other. They are
commonly used for integrating different systems, sharing
data, and automating business processes.

Web Services with Dyalog

What is a Web Service?

A web service 1s a software system designed to support
interoperable machine-to-machine i1nteraction over a network.
It allows different applications to communicate with each
other over the internet using standard protocols such as

HTTP. Web services typically provide a way for different
systems to exchange data and perform actions without needing
to know the internal workings of each other. They are
commonly used for integrating different systems, sharing
data, and automating business processes.

Web Services with Dyalog NA

Web Services

¢ Machine to machine
¢ Use a standard protocol (HTTP, HTTPS)

¢ Expose an Application Programming Interface (API)

Web Services with Dyalog OVNA

(53 | 8 Shopify APl reference docs x4 ~ = [m} x (5 @) GitHub RESTAPI documentatic X + ~ = [m} *

= cC @ (ORNC] shopify.dev/c B & 0o n g = | & cC @ o8 cs.github.com/e bt (= I B =
' .dev docs Apps Themes Custom storefronts Marketplaces APIs and references ¥ Q_ Login Signup I o GitHub Docs [Y— Q
APIs and references «l
Shopify API reference docs
Overview
" i Build apps . B c
o mere T o Explore Shopify’s API reference and templating The REST APl is now versioned. For more information, see L
documentation. You have access to everything from the Build themes
API usage +) . .
Admin APl and app extensions to templating tools. EriE oD Shee e
Admin API + Check out your options to see which one is right for you.
App Bridge + . .
_ GitHub REST API documentation
Remix app package
Partner API Build apps
Payments Apps API Extend Shopify’s core functionality by building apps that
Function APIs + integrate into Shopify’s admin, online store, checkout and
X more.
Discounts + QOverview Quickstart
Miuiltinace =
B Overview - OpenAl API X+ = O X 5 @ APIWebSerice X+ ~ = O X
&« G @ O & nttps/platform.openai.com/docs/overvie 3% W 2 0 I ® O = ¢ G @ QO & ntips weather.gov/documentatio B w ® 0 n ® O =
Documentation APl reference % Forum ®Help

PAST WEATHER SAFETY INFORMATION EDUCATION NEWS SEARCH ABOUT

Winter Storm Continues to Impact New England; Pacific Storm Moving Through the Western U.S.

Virginia Friday

Welcome to the OpenAl developer . ow s i,

APl Web Service
platform b Goumnsn

Technical Bulletins

Start with the basics Entor Your ¢ _ eaees epedieren

ZIP Code

Remember Me

Get Weather The National V e o critical fo ale observations, along with \
h e ch that ex onte d upan the information life

@0 & B0 % XEE

Web Services

¢ Machine to machine
¢ Use a standard protocol (HTTP, HTTPS)

¢ Expose an Application Programming Interface (API)

¢ Server doesn't necessarily know what the client is
e Web page/JavaScript, Phone App, CH#, .NET, APL

¢ Client doesn't know the server's internal workings

Web Services with Dyalog OVNA

HTTP Communications 101

HTTP is a request-response protocol Client Examples:
. A web browser,
A client sends a request to a server Ht tpCommand, cURL,

] JavaScript, Python
The server receives the request

The server runs an application to process the Server Examples:

request IS, Apache, Nginx,
Jarvis,

The server sends a response back to the DUI/MiServer

client

The client receives the response

Web Services with Dyalog OVNA

HTTP Communications 101

HTTP Request

Client Examples:

A web browser,
HttpCommand, cURL,
JavaScript, Python

Client Server

— Server Examples:
lIS, Apache, Nginx,
Jarvis,
DUI/MiServer

HTTP Response

Web Services with Dyalog OVNA

10

Web Service AP| Usage Patterns

¢ Findthe documentation

¢ Determine if you need authentication credentials
¢ Register and obtain an APl key

¢ Many web services provide a free, rate-limited, level of access
¢ Construct and send your request

¢ Process the service's response

Web Services with Dyalog

DOVNA

11

HttpCommand

HttpCommand is a utility that is well-suited to enable the APLer to interact with web
services because it:

Allows you to specify an HTTP request in a manner that is conducive to an APLer
Sends a properly formatted HTTP request to the server

Receives the server's response

Decomposes the response in a manner that is conducive to an APLer

Minimizes the need for you to learn a lot about HTTP

Web Services with Dyalog OVNA

Typical Ht t pCommand Usage

¢ CreateanewHttpCommand
e Specify:

e HTTP Method (GET, PUT, POST, etc)

¢ URL (https://api.github.com/repos)

¢ Any additional necessary headers (Content-Type, Authorization, etc)
¢ Any payload

¢ Send the request

¢ Examine and process the response

Web Services with Dyalog OVNA

https://api.github.com/repos

13

Example

[rc:

0

h < HttpCommand.
h.URL <« 'dyalog.com’
h.Command « 'get'
For < h.Run

| msg: | HTTP Status:

New

200

Web Services with Dyalog

" OK "

ZData:

24139]

DOVNA

14

Shortened Example

[rc:

h

= r
0 | msg:

<« HttpCommand.New 'get’

< h.Run
HTTP Status: 200 "OK"

Web Services with Dyalog

'dyalog.com’

ZData: 24139]

DOVNA

15

Demo Time...

¢ Grabbing a web page
¢ Using a REST web service (GitHub)

¢ Using a non-REST web service (OpenAl)

Web Services with Dyalog

DOVNA

16

JSON AND REST SERVICE

Web Services with Dyalog

DOVNA

17

JARVICE

Web Services with Dyalog

DOVNA

18

JARVIS

Web Services with Dyalog

DOVNA

19

Jarvis

Much like Ht tpCommand, Jarvi s is designed with the APLer in mind:

Client requests are POST requests with JSON payloads
Web Service Endpoints are APL functions

They take an APL array as a right argument

They return an APL array as their result

Jarvis handles all the rest

Web Services with Dyalog

DOVNA

20

More Demos

Web service in 5 Minutes
Limit endpoints
Authentication

Sessioning/State maintenance

Web Services with Dyalog

DOVNA

21

Think about it...

¢ Anything that can "speak" HTTP can talk to your web service
¢ Web page
¢ Phone app
¢ Another process

¢ Even HttpCommand ©

Web Services with Dyalog OVNA

22

Security

If you are sending sensitive content - use HTTPS
Jarvis supports HTTP Basic authentication out of the box
You can implement whatever authentication makes sense

Sessions are independent and cannot see one another,
unless you do so in your application code.

Web Services with Dyalog OVNA

23

Performance

e Jarvis itself has very little overhead

¢ Performance may be impacted by

¢ Number of requests
¢ Size of requests

¢ Application code

¢ How much "state" is maintained on the server and for how long

Web Services with Dyalog OVNA

24

Scalability

At Dyalog'22, Morten and Brian ran a half-day workshop. We:

took an application

made it a Jarvis web service
ran it in a Docker container

moved it to the cloud (AWS)
scaled it

load-balanced it

ran it securely using HTTPS

Web Services with Dyalog

DOVNA

25

The Plan Visualized... (from Dyalog'22)

Web Services with Dyalog

DOVNA

26

The Plan Visualized...

In the beginning, there was an Application...

App

Web Services with Dyalog

DOVNA

27

Run the app as a service

Jarvis
App

Web Services with Dyalog

DOVNA

28

Run it in a container

(Docker Container \

[

Jarvis

App

Jr

_

J

Web Services with Dyalog

DOVNA

29

Split into Front and Back Ends

We'll call this "Two-Tier"

Front End

Write Operations

(I
Back End

Web Services with Dyalog

DOVNA

Try it in the cloud

"The Cloud" (AWS)

Write Operations

()

30 Web Services with Dyalog OVNA

Scale it up

"The Cloud" (AWS)

Write Operations

()

Web Services with Dyalog OVNA

Load balance it

"The Cloud" (AWS)

Database

D Write Operations
()

Load Balancer

32 Web Services with Dyalog

DOVNA

Secure it

"The Cloud" (AWS)

Database

D Write Operations
()

Load Balancer

33 Web Services with Dyalog

DOVNA

34

Jarvis and REST

@ Jarvis can serve REST web services

¢ Instead of "functional" endpoints, you write a function for each
HTTP method your service will support

¢ Each function will parse the requested resource and take
appropriate action

¢ Tome asan APLer, the JSON paradigm seems more natural

¢ If you have an interest in the REST paradigm, ask me

Web Services with Dyalog OVNA

35

In the Jarvis Pipeline

¢ Finish the documentation!
¢ Add more logging and management capability
¢ JAWS - Jarvis And Web Sockets

Web Services with Dyalog

DOVNA

36

Questions?

?

P,

Web Services with Dyalog

DOVNA

	Slide 0: APL and Web Services
	Slide 1: Web Services
	Slide 2: What is a Web Service?
	Slide 3: What is a Web Service?
	Slide 4: What is a Web Service?
	Slide 5: Web Services
	Slide 6: Web Services
	Slide 7: Web Services
	Slide 8: HTTP Communications 101
	Slide 9: HTTP Communications 101
	Slide 10: Web Service API Usage Patterns
	Slide 11: HttpCommand
	Slide 12: Typical HttpCommand Usage
	Slide 13: Example
	Slide 14: Shortened Example
	Slide 15: Demo Time…
	Slide 16
	Slide 17
	Slide 18
	Slide 19: Jarvis
	Slide 20: More Demos
	Slide 21: Think about it…
	Slide 22: Security
	Slide 23: Performance
	Slide 24: Scalability
	Slide 25: The Plan Visualized… (from Dyalog'22)
	Slide 26: The Plan Visualized…
	Slide 27: Run the app as a service
	Slide 28: Run it in a container
	Slide 29: Split into Front and Back Ends
	Slide 30: Try it in the cloud
	Slide 31: Scale it up
	Slide 32: Load balance it
	Slide 33: Secure it
	Slide 34: Jarvis and REST
	Slide 35: In the Jarvis Pipeline
	Slide 36: Questions?

