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Web Services

What
Consuming using Ht tpCommand

Providing using Jarvis

Ask questions!
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What is a Web Service?

e Let's ask a web service what a web service is...
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What is a Web Service?

c<OpenAI.Chat.Completion 'you are a helpful assistant' 'what is a web service?’
c.Run

[rc: O | msg: | HTTP Status: 200 "OK" | #Data: 1 (namespace)]
c.Conversation

system you are a helpful assistant

user what is a web service?

assistant|A web service is a software system designed to support
interoperable machine-to-machine interaction over a network.
It allows different applications to communicate with each
other over the internet using standard protocols such as
HTTP. Web services typically provide a way for different
systems to exchange data and perform actions without needing
to know the internal workings of each other. They are
commonly used for integrating different systems, sharing
data, and automating business processes.
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What is a Web Service?

A web service 1s a software system designed to support
interoperable machine-to-machine i1nteraction over a network.
It allows different applications to communicate with each
other over the internet using standard protocols such as

HTTP. Web services typically provide a way for different
systems to exchange data and perform actions without needing
to know the internal workings of each other. They are
commonly used for integrating different systems, sharing
data, and automating business processes.
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Web Services

¢ Machine to machine
¢ Use a standard protocol (HTTP, HTTPS)

¢ Expose an Application Programming Interface (API)
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Web Services

¢ Machine to machine
¢ Use a standard protocol (HTTP, HTTPS)

¢ Expose an Application Programming Interface (API)

¢ Server doesn't necessarily know what the client is
e Web page/JavaScript, Phone App, CH#, .NET, APL

¢ Client doesn't know the server's internal workings
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HTTP Communications 101

HTTP is a request-response protocol Client Examples:
. A web browser,
A client sends a request to a server Ht tpCommand, cURL,

] JavaScript, Python
The server receives the request

The server runs an application to process the  Server Examples:

request IS, Apache, Nginx,
Jarvis,

The server sends a response back to the DUI/MiServer

client

The client receives the response
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HTTP Communications 101

HTTP Request

Client Examples:

A web browser,
HttpCommand, cURL,
JavaScript, Python

Client Server

— Server Examples:
lIS, Apache, Nginx,
Jarvis,
DUI/MiServer

HTTP Response
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Web Service AP| Usage Patterns

¢ Findthe documentation

¢ Determine if you need authentication credentials
¢ Register and obtain an APl key

¢ Many web services provide a free, rate-limited, level of access
¢ Construct and send your request

¢ Process the service's response
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HttpCommand

HttpCommand is a utility that is well-suited to enable the APLer to interact with web
services because it:

Allows you to specify an HTTP request in a manner that is conducive to an APLer
Sends a properly formatted HTTP request to the server

Receives the server's response

Decomposes the response in a manner that is conducive to an APLer

Minimizes the need for you to learn a lot about HTTP
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Typical Ht t pCommand Usage

¢ CreateanewHttpCommand
e Specify:

e HTTP Method (GET, PUT, POST, etc)

¢ URL (https://api.github.com/repos)

¢ Any additional necessary headers (Content-Type, Authorization, etc)
¢ Any payload

¢ Send the request

¢ Examine and process the response
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Example

[rc:

0

h < HttpCommand.
h.URL <« 'dyalog.com’
h.Command « 'get'
For < h.Run

| msg: | HTTP Status:

New

200

Web Services with Dyalog
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Shortened Example

[rc:

h

= r
0 | msg:

<« HttpCommand.New 'get’

< h.Run
HTTP Status: 200 "OK"

Web Services with Dyalog
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Demo Time...

¢ Grabbing a web page
¢ Using a REST web service (GitHub)

¢ Using a non-REST web service (OpenAl)
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JSON AND REST SERVICE
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JARVICE
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JARVIS

Web Services with Dyalog
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Jarvis

Much like Ht tpCommand, Jarvi s is designed with the APLer in mind:

Client requests are POST requests with JSON payloads
Web Service Endpoints are APL functions

They take an APL array as a right argument

They return an APL array as their result

Jarvis handles all the rest
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More Demos

Web service in 5 Minutes
Limit endpoints
Authentication

Sessioning/State maintenance
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Think about it...

¢ Anything that can "speak" HTTP can talk to your web service
¢ Web page
¢ Phone app
¢ Another process

¢ Even HttpCommand ©
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Security

If you are sending sensitive content - use HTTPS
Jarvis supports HTTP Basic authentication out of the box
You can implement whatever authentication makes sense

Sessions are independent and cannot see one another,
unless you do so in your application code.
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Performance

e Jarvis itself has very little overhead

¢ Performance may be impacted by

¢ Number of requests
¢ Size of requests

¢ Application code

¢ How much "state" is maintained on the server and for how long
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Scalability

At Dyalog'22, Morten and Brian ran a half-day workshop. We:

took an application

made it a Jarvis web service
ran it in a Docker container

moved it to the cloud (AWS)
scaled it

load-balanced it

ran it securely using HTTPS

Web Services with Dyalog
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The Plan Visualized... (from Dyalog'22)
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The Plan Visualized...

In the beginning, there was an Application...

App
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Run the app as a service

Jarvis
App
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Run it in a container

( Docker Container \

[

Jarvis

App

Jr

\_

J
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Split into Front and Back Ends

We'll call this "Two-Tier"

Front End

Write Operations

(I
Back End

Web Services with Dyalog

DOVNA




Try it in the cloud

"The Cloud" (AWS)

Write Operations

()
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Scale it up

"The Cloud" (AWS)

Write Operations

()
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Load balance it

"The Cloud" (AWS)

Database

D Write Operations
()

Load Balancer

32 Web Services with Dyalog

DOVNA




Secure it

"The Cloud" (AWS)

Database

D Write Operations
()

Load Balancer
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Jarvis and REST

@ Jarvis can serve REST web services

¢ Instead of "functional" endpoints, you write a function for each
HTTP method your service will support

¢ Each function will parse the requested resource and take
appropriate action

¢ Tome asan APLer, the JSON paradigm seems more natural

¢ If you have an interest in the REST paradigm, ask me
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In the Jarvis Pipeline

¢ Finish the documentation!
¢ Add more logging and management capability
¢ JAWS - Jarvis And Web Sockets
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Questions?

?

P,
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