
Glasgow 2024

Web Services

Brian Becker Morten Kromberg Michael Baas

Web Services1

 Introductions
 Name

 Any experience?

 Goals

 Schedule
 60 15 60 15 60

 Participate
 Ask questions

 Work together

 Ask for help if you need it

 Have fun

 (⎕IO ⎕ML)←1

Welcome!

Web Services2

Learn enough about HttpCommand to call web services

Learn enough about Jarvis to implement a simple JSON-based web
service

Goals

Web Services3

Client Examples:
A web browser,
HttpCommand,
cURL, JavaScript,
Python

HTTP is a request-response protocol

A client sends a request to a server

The server receives the request

The server runs an application to process the request

The server sends a response back to the client

The client receives the response

HTTP Communications 101

Server Examples:
IIS, Apache, Nginx,
Jarvis,
DUI/MiServer

Web Services4

HTTP Communications 101

Web Services5

HttpCommand is a utility that enables the APLer to interact with web
services because it:

 Allows you to specify an HTTP request in a manner that is conducive to
an APLer

 Sends a properly formatted HTTP request to the server

 Receives the server's response

 Decomposes the response in a manner that is conducive to an APLer

 Minimizes the need for you to learn a lot about HTTP

HttpCommand

Web Services6

]load HttpCommand
#.HttpCommand

Under Dyalog 19.0 and later
]link.import HttpCommand

HttpCommand.Version
HttpCommand 5.4.6 2024-02-28

Obtaining HttpCommand

Web Services7

HttpCommand.Upgrade will download the latest released version from
GitHub if it's newer than your current version.

 HttpCommand.Upgrade
1 Upgraded to HttpCommand 5.8.0 2024-07-17 ...

DO NOT use HttpCommand.Upgrade in production code.
A major version bump might introduce a breaking change in your
application.
Upgrade in a development environment, test it, and then save it.

Upgrading HttpCommand

Web Services8

HttpCommand is documented online.

 HttpCommand.Documentation
See https://dyalog.github.io/HttpCommand/

HttpCommand documentation

Web Services9

Your first HttpCommand

⊢ resp ← HttpCommand.Get 'dyalog.com'
[rc: 0 | msg: | HTTP Status: 200 "OK" | ≢Data: 24371]

rc is ≠0 if HttpCommand could not successfully send and receive
msg is a message explaining why

HTTP Status is the status, if any, set by the host
2XX means successful

Data is the payload sent by the host

Web Services10

resp is a namespace

resp.(7 3⍴⎕nl -⍳9)
 BytesWritten Command Cookies
 Data Elapsed GetHeader
 Headers Host HttpMessage
 HttpStatus HttpVersion IsOK
 OutFile Path PeerCert
 Port Redirections Secure
 URL msg rc

Web Services11

resp

resp.Data contains the response payload

 50↑resp.Data
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Trans

 resp.GetHeader 'content-type'
text/html; charset=utf-8

 'hr' ⎕WC 'HTMLRenderer' ('HTML' resp.Data)

Web Services12

resp

resp.Data contains the response payload

 50↑resp.Data
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Trans

 resp.GetHeader 'content-type'
text/html; charset=utf-8

 'hr' ⎕WC 'HTMLRenderer' ('HTML' resp.Data)

Web Services13

"One time" functions:
 Get - Issue a GET request

 resp← HttpCommand.Get URL Params Headers
 Do - Send any HTTP Command:

 resp← HttpCommand.Do Command URL Params Headers
 GetJSON - Interact with JSON-based web services

 resp← HttpCommand.GetJSON Command URL Params Headers

New - Create a new request instance:
 req← HttpCommand.New Command URL Params Headers

HttpCommand "Shortcut" Functions

Web Services14

The "One time" HttpCommand functions (Get, GetJSON, and Do):

 create, configure and run a local HttpCommand instance.
They send the request and return the response namespace.
The instance, being local to the function, disappears when the
function exits.

 No information is carried over from one invocation to the next

"One time" vs "Create an Instance"

Web Services15

When you create an HttpCommand instance using HttpCommand.New:

 request settings that you set persist in the instance - you don't need
to respecify them each time

 HTTP cookies that are returned by the server are preserved and sent
on subsequent requests

 the connection to the server remains open unless it's closed by the
server

"One time" vs "Create an Instance"

Web Services16

Create a new "POST" HTTP request to create a GitHub repository
 req←HttpCommand.New 'post' 'https://api.github.com/user/repos'

Set the authentication for the request
 req.(AuthType Auth)←'bearer' GitHubAPIToken

Create parameters for the request
 req.Params←⎕NS ''
 req.Params.(name description)←'test-repo' 'test repository'

Run the request
 resp←Req.Run

Anatomy of an HTTP Request

Web Services17

Anatomy of an HTTP Request
Method Endpoint HttpVersion
Headers
Body

POST /user/repos HTTP/1.1
Host: api.github.com
User-Agent: Dyalog-HttpCommand/5.8.0
Accept: */*
Accept-Encoding: gzip, deflate
Authorization: Bearer [--Your Token--]
Content-Type: application/json;charset=utf-8
Content-Length: 52
{"description":"test repository","name":"test-repo"}

Web Services18

HttpVersion HttpStatus HttpMessage
Headers
Body

HTTP/1.1 201 Created
Server: GitHub.com
Date: Fri, 08 Sep 2023 18:36:10 GMT
Content-Type: application/json; charset=utf-8
Content-Length: 5562
Location: https://api.github.com/repos/plusdottimes/test-repo

{"id":689076423,"node_id":"R_kgDOKRJ4xw","name":"test-
repo","full_name":"plusdottimes/test-repo" ...

Anatomy of an HTTP Response

https://api.github.com/repos/plusdottimes/test-repo

Web Services19

Using HttpCommand

1. Create an instance

2. Configure your request

3. Send the request

4. Inspect the response

Web Services21

h←HttpCommand.New args

The following are all equivalent:

 req←HttpCommand.New 'post' 'bloofo.com' (⍳10) ('content-type'
'application/json')

 req←HttpCommand.New ''
 req.(Command URL Params)←'post' 'bloofo.com' (⍳10)
 req.Headers←'content-type' 'application/json'

 ns←⎕NS ''
 ns.(Command URL Params)←'post' 'bloofo.com' (⍳10)
 ns.Headers←'content-type' 'application/json'
 req←HttpCommand.New ns

1. Create an instance

Web Services24

Command, URL, Params, and Headers are the most-commonly specified settings.

This is why they are arguments to Get, Do, GetJSON, and New.
If you create a request using New, you can specify additional settings before sending the request.

 req←HttpCommand.New 'get'

 req.URL←'https://api.github.com/users/plusdottimes/repos'

 req.OutFile←'/tmp/myfile.json'

 req.MaxPayloadSize←250000

 req.Config ⍝ returns all settings for this request

 req.Show ⍝ returns the request as it will be sent to the server

2. Configure your request

Web Services25

HttpCommand will generate several headers, unless you specify them yourself.
Headers are stored in req.Headers

Unconditionally set a header
 'header-name' req.SetHeader 'value'

Set a header if not already set
 'header-name' req.AddHeader 'value'

Remove a header
 req.RemoveHeader 'header-name'

Suppress an HttpCommand default header
 'accept-encoding' req.SetHeader ''

Working with Headers

Web Services28

req←HttpCommand.New 'get'
 req.URL←'https://api.github.com/users/plusdottimes/repos'

Use the Run method to send the request
 ⊢resp←req.Run
[rc: 0 | msg: | HTTP Status: 200 "OK" | ≢Data: 10026]

3. Send the request

Web Services31

resp.IsOK checks that 0=rc and 2=⌊0.01×HttpStatus
 resp.IsOK
1
 resp.Headers ⍝ contains the response headers
 resp.Data ⍝ contains the response payload

4. Inspect the response

Web Services32

rc and HttpStatus
Try:

 HttpCommand.Get ''
[rc: ¯1 | msg: No URL specified | HTTP Status: "" | ≢Data: 0]

 HttpCommand.Get 'bloofo.com'
[rc: 1106 | msg: Conga client creation failed...

 HttpCommand.Get 'wikipedia.com/bloofo'
[rc: 0 | msg: | HTTP Status: 404 "Not Found"...

Web Services34

Best Practices
resp←HttpCommand.Get 'someurl'
:If resp.IsOK
 ⍝ process response
:Else
 ⍝ deal with failed request
:EndIf

Web Services35

Many web services return XML or JSON payloads.

Use TranslateData←1 to automatically translate these using ⎕XML or
⎕JSON based on the content-type returned by the host.

If ⎕XML or ⎕JSON fails, resp.rc is set to ¯2, but the response payload is
preserved, untranslated, in resp.Data

req.TranslateData←1

Web Services36

url←'https://api.github.com/users/plusdottimes/repos'
 req←HttpCommand.New 'get' url

 ⊢resp←req.Run
[rc: 0 | msg: | HTTP Status: 200 "OK" | ≢Data: 10659]

 40↑resp.Data
[{"id":854679147,"node_id":"R_kgDOMvFeaw

req.TranslateData←1

Web Services37

req.TranslateData←1

 ⊢resp←req.Run
[rc: 0 | msg: | HTTP Status: 200 "OK" | ≢Data: 2]

 ↑r.Data.(full_name created_at)
 plusdottimes/MyPrivateRepo 2024-09-09T15:38:10Z
 plusdottimes/MyPublicRepo 2024-09-09T15:47:32Z

req.TranslateData←1

Web Services38

1. Create an instance [23] req←HttpCommand.New 'get' 'someurl.com'
2. Configure your request [24] req.TranslateData←1
 [25] 'content-encoding' req.SetHeader ''
 [26] req.MaxPayloadSize←200000
3. Send the request [27] resp←req.Run
4. Inspect the response [28] :If resp.IsOK
 [29] ⍝ code to run on success
 [30] :Else
 [31] ⍝ code to run on failure
 [32] :EndIf

Recap

Web Services39

Find the API description for the service
 For example, search for "github api" or "openai api"

Authentication - some services may require an API key
 For billing, usage tracking, security

Cost - some services are free, others have various billing models
 Examples: OpenAI, Google Maps

Web Service APIs

Web Services40

GET request parameters are in the query string of the URL

https://www.alphavantage.co/query?function=INTRADAY&symbol=IBM&interval=5min

 req←HttpCommand.New 'get' 'https://www.alphavantage.co/query'

 req.Params←'function' 'INTRADAY' 'symbol' 'IBM' 'interval' '5min'

OR req.Params←('function' 'INTRADAY') ('symbol' 'IBM') ('interval' '5min')

OR req.Params←3 2⍴'function' 'INTRADAY' 'symbol' 'IBM' 'interval' '5min'

OR req.Params←⎕NS ''
 req.Params.(function symbol interval)←'INTRADAY' 'IBM' '5min'

Translating API Examples into HttpCommand

https://www.alphavantage.co/query?function=INTRADAY&symbol=IBM&interval=5min

Web Services41

POST, PUT, DELETE request parameters are in the body of the request
curl -L \
 -X POST \
 -H "Accept: application/vnd.github+json" \
 -H "Authorization: Bearer [--Your Token--]" \
 -H "X-GitHub-Api-Version: 2022-11-28" \
 https://api.github.com/user/repos \
 -d '{"name":"test-repo","description":"test repository"}'

Translating API Examples into HttpCommand

Command

HeadersURL Params

follow any redirections

Web Services42

Create a new "POST" HTTP request to create a GitHub repository
 req←HttpCommand.New 'post' 'https://api.github.com/user/repos'

Set the authentication for the request
 req.(AuthType Auth)←'bearer' GitHubAPIToken

Set the API version header
 'X-GitHub-Api-Version' req.SetHeader '2022-11-28'

Create parameters for the request
 req.Params←⎕NS ''
 req.Params.(name description)←'test-repo' 'test repository'

Build the equivalent request with HttpCommand

Web Services43

Once you've identified a web service, generally you will need to:

 Create a UserID

 Give some form of payment information for services that charge for use

 Generate an API key and define the scope of use for that API key

 Keep your API key secure!
DO NOT push them to a public repository!

 Use your API key in requests that need authorization

Generic Steps to Using an API

Web Services44

We're going to the GitHub API in the coming exercises:

 GitHub UserID plusdottimes has been created for this workshop

 A personal access token has been created for your use
This will allow us to read and write repositories in this account

 For security purposes, this UserID will be deleted following this workshop

The GitHub API

Web Services45

GitHub has two types of Personal Access Tokens
Classic

 have access to all repositories and organizations that the user can access
 allowed to live forever

Fine-grained
 granular permissions with settings "no access", "read", or "read and write"
 can specify specific repositories
 have an expiration date

GitHub Personal Access Tokens

Web Services46

Exercise Time!

Web Services50

Web Service
Uses HTTP

Machine-to-machine

Variety of clients

Python, C#, APL, JavaScript

Specific API

Web Server
Uses HTTP

Human interface

Client is typically a browser
using HTML/CSS/JavaScript

Web Service vs. Web Server

Web Services51

Create a Jarvis web service in 5 minutes or so…

JARVIS Exercise 1

Web Services52

We defined and started a web service
 Defined an "endpoint" (the sum function)

 Created the server using j←Jarvis.New ''

 Started the server using j.Run

 Used HttpCommand as a client

 Used a browser to open Jarvis' built-in HTML page that contains
a JavaScript client to communicate with the web service

What just happened?

Web Services53

What happened under the covers?

JavaScript running in the browser created an XMLHttpRequest and sent the contents
of the input window as its payload

Jarvis received the request and converted the payload to APL

Jarvis called the endpoint, passing the APL payload as its right argument

sum did its thing and returned an APL array as its result

Jarvis translated the result into JSON and sent it back to the client as the response
payload

JavaScript in the client updated the output area on the page with the response
payload

Web Services54

JSON
Endpoints are result-returning monadic or dyadic
APL functions

All requests use HTTP POST

Request and response payloads are JSON

Jarvis handles all conversion between JSON and APL

Use this when your endpoints are "functional"

REST
Write a function for each HTTP method your
service will support (GET, POST, PUT, etc)

Each function will:

Take the HTTP request as its right argument

Parse the requested resource and query
parameters/payload

Take some appropriate action

Consider this when you are managing resources

GET requests are easier for the client

Jarvis' Two Paradigms

Web Services55

Client Request:
POST /GetPortfolio

{myid: 12345}

Server Code:

 ∇r←GetPortfolio payload
[1] r←CalcPortfolio payload.myid
 ∇

Jarvis' Two Paradigms - JSON

Web Services56

Client Request:
GET /Portfolio?myid=12345

Server Code:
 ∇r←GET req
[1] :Select req.EndPoint
[2] :Case '/portfolio'
[3] myid←2⊃⎕VFI req.QueryParameters req.GetHeader 'myid'
[4] r←CalcPortfolio myid
[5] :Case '/somethingelse'
[6] ⍝ something else code
[7] :Case '/yetanotherthing'
[8] ...

Jarvis' Two Paradigms - REST

Web Services57

JSON – JavaScript Object Notation

String: "this is a string"

Number: 42

Array: [1,2,"hello world"]

Object: {"name": "value"}

JSON in Brief

Web Services58

ns←⎕NS ''
 ns.(name age)←'Dyalog' 40
 array←2 2⍴(2 2⍴⍳4)'Jarvis'('APL' 23)ns

 ⎕JSON⍠('HighRank' 'Split')⊢array
[[[[1,2],[3,4]],"Jarvis"],[["APL",23],{"age":40,"name":"Dyalog"}]]

JSON in Brief

Web Services59

CodeLocation

 is where Jarvis will look for your Endpoint code.

 defaults to #

 can be the name of or reference to an existing namespace

 j.Stop

 'myApp' #.⎕NS '' ⍝ create a namespace

 myApp.Rotate←⌽ ⍝ define an endpoint

 j.CodeLocation←#.myApp ⍝ or '#.myApp'

 j.Start

CodeLocation

Web Services60

CodeLocation can also be the name of a folder from where Jarvis will
load your code into a namespace named #.CodeLocation.

This is similar to what Link does

If the folder is a relative file name, it will be relative to the path of:

 your workspace if you are running in a saved workspace

 your JarvisConfig file (we'll get to what this is in a couple slides)

 the Jarvis source file

CodeLocation

Web Services61

Jarvis will look in only CodeLocation and below for your code.

Jarvis will consider any result-returning functions that are monadic,
dyadic, or ambivalent as endpoints for your service.

This includes functions in subordinate namespaces and public methods in
classes. For example: #.CodeLocation.Utils.center is exposed as
/Utils/center.

CodeLocation

Web Services62

You can use IncludeFns and ExcludeFns to restrict what functions
seen as endpoints.

Both can contain individual function names, simple wildcarded expressions,
or regex (or any combination thereof).

 j.ExcludeFns←'*.*' '∆*'
 j.IncludeFns←'GetPortfolio' 'BuyStock'

In the case where there's a conflict between IncludeFns and
ExcludeFns, ExcludeFns wins.

Filtering Endpoints

Web Services63

You can specify all your Jarvis settings in a JSON or JSON5 file.

{
 "Port": 22321,
 "CodeLocation": "./myApp"
}

JarvisConfig File

Web Services64

j.Debug←0 ⍝ Jarvis traps all errors
 j.Debug←1 ⍝ Stop on error
 j.Debug←2 ⍝ Stop before calling your code
 j.Debug←4 ⍝ Stop after receiving request
 j.Debug←8 ⍝ Log Conga events to the session

Codes are additive.

When Debug is 0, Jarvis has a "safety net" :Trap 0 that will catch any
untrapped errors in your endpoint code and report an HTTP 500 Internal
Server Error status.

Debugging Jarvis

Web Services65

ErrorInfoLevel controls how much information is sent in the HTTP
status message when an error occurs.

 j.ErrorInfoLevel←0 ⍝ no additional information

 j.ErrorInfoLevel←1 ⍝ APL error name

 j.ErrorInfoLevel←2 ⍝ + fn[line] where error occurred

Debugging Jarvis

Web Services66

If your endpoint function is dyadic or ambivalent, Jarvis will pass the
request object as the left argument.

The request object is the same for both JSON and REST paradigms.

The request object contains all the information from the client request as
well as some useful functions to manipulate that information.

Optional Left Argument – Request Object

Web Services67

How should you handle errors that occur in your endpoint code?

Options include:

 Let Jarvis' safety net handle it

 Trap or preemptively check for the error and

 use req.Fail to convey the error

 send information back in the response payload

Debugging - Error Trapping Endpoints

Web Services68

Exercise Time – Jarvis Exercise 2

Web Services69

There are several points (hooks) in Jarvis' flow where you can inject custom behavior.

You specify these by setting a hook setting to the name of a function to execute.

AppCloseFn - called when Jarvis shuts down

AppInitFn - called when Jarvis starts

AuthenticateFn - called on every request to authenticate the request

SessionInitFn - called when a new session is initialized

ValidateRequestFn - called on every request to perform any other validation you need

User "Hooks"

Web Services70

Jarvis can use HTTP Basic authentication by default.
This can be disabled by setting HTTPAuthentication to ''

Credentials are base64-encoded (not encrypted) and sent in the
Authorization HTTP header

When using HTTP Basic authentication, Jarvis will set the request UserID
and Password settings.

Once authenticated, browsers will send credentials with every subsequent
request.

HTTP Basic Authentication

Web Services71

You do not have to use HTTP Basic Authentication.

You can implement your own scheme – for instance passing credentials in
the request payload, or using a token-based scheme with the
Authorization header

Other Forms of Authentication

Web Services72

AuthenticateFn specifies the name of a function to perform authentication.

AuthenticateFn should return a 0 if the authentication succeeds or is not
necessary.

If you use HTTPS, you can safely transmit credentials in plaintext. Otherwise, you
should be running on a network you trust or using salt and encryption to encrypt
credentials.

Authenticating

Web Services73

Exercise Time – Jarvis Exercise 3

Web Services74

If you need to maintain state on the server between requests, Jarvis supports sessions by
including a reference to a session namespace in the request object – req.Session

This means endpoints that need to reference the session MUST take a left argument (the
request object).

If you specify SessionInitFn, it's the name of the function to perform session initialization.

The function specified by SessionInitFn takes the request object as its right argument.

 j.SessionInitFn←'InitSession'

 InitSession←{⍵.Session.RunningTotal←0}

Maintaining State With Sessions

Web Services75

Jarvis uses the following settings to control sessions:

SessionTimeout - 0 = do not use sessions, ¯1 = no timeout, 0< session timeout time (in
minutes)

SessionIdHeader – the name of the header field for the session token

SessionUseCookie - 0 = just use the header; 1 = use an HTTP cookie

SessionPollingTime - how frequently (in minutes) we should poll for timed out sessions

Maintaining State With Sessions

Web Services76

Exercise Time – Jarvis Exercise 4

Web Services77

HTMLInterface controls the JSON mode's HTML interface

HTMLInterface is turned on by default in JSON mode

HTMLInterface←0 ⍝ disable the HTML interface

HTMLInterface←1 ⍝ enable the built-in HTML page

HTMLInterface←'folder' ⍝ looks for folder/index.html

HTMLInterface←'file.html' ⍝ specific file

HTMLInterface←'' 'function' ⍝ function returns HTML code

HTMLInterface

Web Services78

Okay, we lied… you can use HTTP GET if you set AllowGETs←1

The JSON payload is sent in the request query string

 j.AllowGETs←1
 HttpCommand.Get 'http://localhost:8080/sum?[5,6,7]'

AllowGETs

Web Services79

Okay, we lied again… the payload doesn't have to be JSON.

If a web page has a form enctype set to multipart/form-data

And AllowFormData←1, Jarvis will process the request.

This is useful for uploading files to Jarvis.

AllowFormData

Web Services80

Conga is Dyalog's TCP/IP utility framework.

HttpCommand and Jarvis both use Conga.
So do other Dyalog utilities like isolate. So might your application itself.

If you have more than one component that uses Conga, the best practice is to copy
the Conga namespace, preferably into # and then point each Conga-using utility to
that copy.

Both HttpCommand and Jarvis have a CongaRef setting that can be set to point
to the Conga namespace.

 (HttpCommand Jarvis).CongaRef←#.Conga

HttpCommand, Jarvis, and Conga

Web Services81

Exercise Time – Jarvis/HttpCommand

	Opening
	Slide 0: Web Services
	Slide 1: Welcome!
	Slide 2: Goals

	HttpCommand
	Slide 3: HTTP Communications 101
	Slide 4: HTTP Communications 101
	Slide 5: HttpCommand
	Slide 6: Obtaining HttpCommand
	Slide 7: Upgrading HttpCommand
	Slide 8: HttpCommand documentation
	Slide 9: Your first HttpCommand
	Slide 10: resp is a namespace
	Slide 11: resp
	Slide 12: resp
	Slide 13: HttpCommand "Shortcut" Functions
	Slide 14: "One time" vs "Create an Instance"
	Slide 15: "One time" vs "Create an Instance"
	Slide 16: Anatomy of an HTTP Request
	Slide 17: Anatomy of an HTTP Request
	Slide 18: Anatomy of an HTTP Response
	Slide 19: Using HttpCommand
	Slide 21: 1. Create an instance
	Slide 24: 2. Configure your request
	Slide 25: Working with Headers
	Slide 28: 3. Send the request
	Slide 31: 4. Inspect the response
	Slide 32: rc and HttpStatus
	Slide 34: Best Practices
	Slide 35: req.TranslateData←1
	Slide 36: req.TranslateData←1
	Slide 37: req.TranslateData←1
	Slide 38: Recap
	Slide 39: Web Service APIs
	Slide 40: Translating API Examples into HttpCommand
	Slide 41: Translating API Examples into HttpCommand
	Slide 42: Build the equivalent request with HttpCommand
	Slide 43: Generic Steps to Using an API
	Slide 44: The GitHub API
	Slide 45: GitHub Personal Access Tokens
	Slide 46: Exercise Time!

	Jarvis
	Slide 50: Web Service vs. Web Server
	Slide 51: JARVIS Exercise 1
	Slide 52: What just happened?
	Slide 53: What happened under the covers?
	Slide 54: Jarvis' Two Paradigms
	Slide 55: Jarvis' Two Paradigms - JSON
	Slide 56: Jarvis' Two Paradigms - REST
	Slide 57: JSON in Brief
	Slide 58: JSON in Brief
	Slide 59: CodeLocation
	Slide 60: CodeLocation
	Slide 61: CodeLocation
	Slide 62: Filtering Endpoints
	Slide 63: JarvisConfig File
	Slide 64: Debugging Jarvis
	Slide 65: Debugging Jarvis
	Slide 66: Optional Left Argument – Request Object
	Slide 67: Debugging - Error Trapping Endpoints
	Slide 68: Exercise Time – Jarvis Exercise 2
	Slide 69: User "Hooks"
	Slide 70: HTTP Basic Authentication
	Slide 71: Other Forms of Authentication
	Slide 72: Authenticating
	Slide 73: Exercise Time – Jarvis Exercise 3
	Slide 74: Maintaining State With Sessions
	Slide 75: Maintaining State With Sessions
	Slide 76: Exercise Time – Jarvis Exercise 4
	Slide 77: HTMLInterface
	Slide 78: AllowGETs
	Slide 79: AllowFormData
	Slide 80: HttpCommand, Jarvis, and Conga
	Slide 81: Exercise Time – Jarvis/HttpCommand

