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 Introductions
 Name

 Any experience?

 Goals

 Schedule
 60 15 60 15 60

 Participate
 Ask questions

 Work together

 Ask for help if you need it

 Have fun

 (⎕IO ⎕ML)←1

Welcome!
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Learn enough about HttpCommand to call web services

Learn enough about Jarvis to implement a simple JSON-based web 
service

Goals
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Client Examples:
A web browser, 
HttpCommand, 
cURL, JavaScript, 
Python

HTTP is a request-response protocol

A client sends a request to a server

The server receives the request

The server runs an application to process the request

The server sends a response back to the client

The client receives the response

HTTP Communications 101

Server Examples:
IIS, Apache, Nginx, 
Jarvis, 
DUI/MiServer
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HTTP Communications 101
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HttpCommand is a utility that enables the APLer to interact with web 
services because it:

 Allows you to specify an HTTP request in a manner that is conducive to 
an APLer

 Sends a properly formatted HTTP request to the server

 Receives the server's response

 Decomposes the response in a manner that is conducive to an APLer

 Minimizes the need for you to learn a lot about HTTP

HttpCommand
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]load HttpCommand
#.HttpCommand

Under Dyalog 19.0 and later
      ]link.import HttpCommand

HttpCommand.Version
HttpCommand  5.4.6  2024-02-28

Obtaining HttpCommand
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HttpCommand.Upgrade will download the latest released version from 
GitHub if it's newer than your current version.

      HttpCommand.Upgrade
1  Upgraded to HttpCommand 5.8.0 2024-07-17 ...

DO NOT use HttpCommand.Upgrade in production code. 
A major version bump might introduce a breaking change in your 
application. 
Upgrade in a development environment, test it, and then save it.

Upgrading HttpCommand
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HttpCommand is documented online.

      HttpCommand.Documentation
See https://dyalog.github.io/HttpCommand/

HttpCommand documentation
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Your first HttpCommand

⊢ resp ← HttpCommand.Get 'dyalog.com'
[rc: 0 | msg:  | HTTP Status: 200 "OK" | ≢Data: 24371]

rc is ≠0 if HttpCommand could not successfully send and receive
msg is a message explaining why

HTTP Status is the status, if any, set by the host
2XX means successful

Data is the payload sent by the host
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resp is a namespace

resp.(7 3⍴⎕nl -⍳9)
 BytesWritten  Command       Cookies     
 Data          Elapsed       GetHeader   
 Headers       Host          HttpMessage 
 HttpStatus    HttpVersion   IsOK        
 OutFile       Path          PeerCert    
 Port          Redirections  Secure      
 URL           msg           rc
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resp

resp.Data contains the response payload

      50↑resp.Data
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Trans
     
      resp.GetHeader 'content-type'
text/html; charset=utf-8 

      'hr' ⎕WC 'HTMLRenderer' ('HTML' resp.Data)
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resp

resp.Data contains the response payload

      50↑resp.Data
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Trans
     
      resp.GetHeader 'content-type'
text/html; charset=utf-8 

      'hr' ⎕WC 'HTMLRenderer' ('HTML' resp.Data)
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"One time" functions:
 Get - Issue a GET request

     resp← HttpCommand.Get URL Params Headers
 Do - Send any HTTP Command:

     resp← HttpCommand.Do Command URL Params Headers
 GetJSON - Interact with JSON-based web services

     resp← HttpCommand.GetJSON Command URL Params Headers

New - Create a new request instance:
          req← HttpCommand.New Command URL Params Headers

HttpCommand "Shortcut" Functions



Web Services14

The "One time" HttpCommand functions (Get, GetJSON, and Do):

 create, configure and run a local HttpCommand instance.
They send the request and return the response namespace.
The instance, being local to the function, disappears when the 
function exits.

 No information is carried over from one invocation to the next

"One time" vs "Create an Instance"
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When you create an HttpCommand instance using HttpCommand.New:

 request settings that you set persist in the instance - you don't need 
to respecify them each time

 HTTP cookies that are returned by the server are preserved and sent 
on subsequent requests 

 the connection to the server remains open unless it's closed by the 
server

"One time" vs "Create an Instance"
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Create a new "POST" HTTP request to create a GitHub repository
      req←HttpCommand.New 'post' 'https://api.github.com/user/repos'

Set the authentication for the request
      req.(AuthType Auth)←'bearer' GitHubAPIToken

Create parameters for the request
      req.Params←⎕NS ''
      req.Params.(name description)←'test-repo' 'test repository'

Run the request
      resp←Req.Run

Anatomy of an HTTP Request
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Anatomy of an HTTP Request
Method Endpoint HttpVersion
Headers
Body

POST /user/repos HTTP/1.1
Host: api.github.com
User-Agent: Dyalog-HttpCommand/5.8.0
Accept: */*
Accept-Encoding: gzip, deflate
Authorization: Bearer [--Your Token--]
Content-Type: application/json;charset=utf-8
Content-Length: 52
{"description":"test repository","name":"test-repo"}
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HttpVersion HttpStatus HttpMessage
Headers
Body

HTTP/1.1 201 Created
Server: GitHub.com
Date: Fri, 08 Sep 2023 18:36:10 GMT
Content-Type: application/json; charset=utf-8
Content-Length: 5562
Location: https://api.github.com/repos/plusdottimes/test-repo

{"id":689076423,"node_id":"R_kgDOKRJ4xw","name":"test-
repo","full_name":"plusdottimes/test-repo" ...

Anatomy of an HTTP Response

https://api.github.com/repos/plusdottimes/test-repo
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Using HttpCommand

1.  Create an instance

2.  Configure your request

3.  Send the request

4.  Inspect the response
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h←HttpCommand.New args

The following are all equivalent:

      req←HttpCommand.New 'post' 'bloofo.com' (⍳10) ('content-type' 
'application/json')

      req←HttpCommand.New ''
      req.(Command URL Params)←'post' 'bloofo.com' (⍳10)
      req.Headers←'content-type' 'application/json'

      ns←⎕NS ''
      ns.(Command URL Params)←'post' 'bloofo.com' (⍳10)
      ns.Headers←'content-type' 'application/json'
      req←HttpCommand.New ns

1. Create an instance
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Command, URL, Params, and Headers are the most-commonly specified settings.

This is why they are arguments to Get, Do, GetJSON, and New.
If you create a request using New, you can specify additional settings before sending the request.

      req←HttpCommand.New 'get'

      req.URL←'https://api.github.com/users/plusdottimes/repos'

      req.OutFile←'/tmp/myfile.json'

      req.MaxPayloadSize←250000

      req.Config ⍝ returns all settings for this request

      req.Show   ⍝ returns the request as it will be sent to the server

2. Configure your request
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HttpCommand will generate several headers, unless you specify them yourself.
Headers are stored in req.Headers

Unconditionally set a header
      'header-name' req.SetHeader 'value'

Set a header if not already set
      'header-name' req.AddHeader 'value'

Remove a header
      req.RemoveHeader 'header-name'

Suppress an HttpCommand default header
      'accept-encoding' req.SetHeader '' 

Working with Headers
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req←HttpCommand.New 'get' 
      req.URL←'https://api.github.com/users/plusdottimes/repos'

Use the Run method to send the request
      ⊢resp←req.Run
[rc: 0 | msg:  | HTTP Status: 200 "OK" | ≢Data: 10026]

3. Send the request
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resp.IsOK checks that 0=rc and 2=⌊0.01×HttpStatus 
      resp.IsOK
1
      resp.Headers  ⍝ contains the response headers
      resp.Data     ⍝ contains the response payload

4. Inspect the response
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rc and HttpStatus
Try:

      HttpCommand.Get ''
[rc: ¯1 | msg: No URL specified | HTTP Status:  "" | ≢Data: 0]

      HttpCommand.Get 'bloofo.com'
[rc: 1106 | msg: Conga client creation failed...

      HttpCommand.Get 'wikipedia.com/bloofo'
[rc: 0 | msg:  | HTTP Status: 404 "Not Found"...
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Best Practices
resp←HttpCommand.Get 'someurl'
:If resp.IsOK
    ⍝ process response
:Else 
    ⍝ deal with failed request
:EndIf
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Many web services return XML or JSON payloads.

Use TranslateData←1 to automatically translate these using ⎕XML or 
⎕JSON based on the content-type returned by the host.

If ⎕XML or ⎕JSON fails, resp.rc is set to ¯2, but the response payload is 
preserved, untranslated, in resp.Data

req.TranslateData←1
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url←'https://api.github.com/users/plusdottimes/repos'
      req←HttpCommand.New 'get' url

      ⊢resp←req.Run
[rc: 0 | msg:  | HTTP Status: 200 "OK" | ≢Data: 10659]

      40↑resp.Data
[{"id":854679147,"node_id":"R_kgDOMvFeaw

req.TranslateData←1
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req.TranslateData←1

      ⊢resp←req.Run
[rc: 0 | msg:  | HTTP Status: 200 "OK" | ≢Data: 2]

      ↑r.Data.(full_name created_at)
 plusdottimes/MyPrivateRepo  2024-09-09T15:38:10Z 
 plusdottimes/MyPublicRepo   2024-09-09T15:47:32Z 

req.TranslateData←1
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1. Create an instance [23]  req←HttpCommand.New 'get' 'someurl.com'
2. Configure your request [24]  req.TranslateData←1
   [25]  'content-encoding' req.SetHeader ''
   [26]  req.MaxPayloadSize←200000
3. Send the request  [27]  resp←req.Run
4. Inspect the response [28] :If resp.IsOK
   [29]    ⍝ code to run on success
   [30] :Else
   [31]    ⍝ code to run on failure
   [32] :EndIf

Recap
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Find the API description for the service
 For example, search for "github api" or "openai api"

Authentication - some services may require an API key
 For billing, usage tracking, security

Cost - some services are free, others have various billing models
 Examples: OpenAI, Google Maps

Web Service APIs
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GET request parameters are in the query string of the URL

https://www.alphavantage.co/query?function=INTRADAY&symbol=IBM&interval=5min

      req←HttpCommand.New 'get' 'https://www.alphavantage.co/query'

      req.Params←'function' 'INTRADAY' 'symbol' 'IBM' 'interval' '5min'

OR    req.Params←('function' 'INTRADAY') ('symbol' 'IBM') ('interval' '5min')

OR    req.Params←3 2⍴'function' 'INTRADAY' 'symbol' 'IBM' 'interval' '5min'

OR req.Params←⎕NS ''
      req.Params.(function symbol interval)←'INTRADAY' 'IBM' '5min'

Translating API Examples into HttpCommand

https://www.alphavantage.co/query?function=INTRADAY&symbol=IBM&interval=5min
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POST, PUT, DELETE request parameters are in the body of the request
curl -L \
  -X POST \
  -H "Accept: application/vnd.github+json" \
  -H "Authorization: Bearer [--Your Token--]" \
  -H "X-GitHub-Api-Version: 2022-11-28" \
  https://api.github.com/user/repos \
  -d '{"name":"test-repo","description":"test repository"}'

Translating API Examples into HttpCommand

Command

HeadersURL Params

follow any redirections
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Create a new "POST" HTTP request to create a GitHub repository
      req←HttpCommand.New 'post' 'https://api.github.com/user/repos'

Set the authentication for the request
      req.(AuthType Auth)←'bearer' GitHubAPIToken

Set the API version header
      'X-GitHub-Api-Version' req.SetHeader '2022-11-28'

Create parameters for the request
      req.Params←⎕NS ''
      req.Params.(name description)←'test-repo' 'test repository'

Build the equivalent request with HttpCommand
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Once you've identified a web service, generally you will need to:

 Create a UserID

 Give some form of payment information for services that charge for use

 Generate an API key and define the scope of use for that API key

 Keep your API key secure! 
DO NOT push them to a public repository!

 Use your API key in requests that need authorization

Generic Steps to Using an API
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We're going to the GitHub API in the coming exercises:

 GitHub UserID plusdottimes has been created for this workshop

 A personal access token has been created for your use
This will allow us to read and write repositories in this account

 For security purposes, this UserID will be deleted following this workshop

The GitHub API
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GitHub has two types of Personal Access Tokens
Classic

 have access to all repositories and organizations that the user can access
 allowed to live forever

Fine-grained
 granular permissions with settings "no access", "read", or "read and write"
 can specify specific repositories
 have an expiration date

GitHub Personal Access Tokens
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Exercise Time!
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Web Service
Uses HTTP

Machine-to-machine

Variety of clients

Python, C#, APL, JavaScript

Specific API

Web Server
Uses HTTP

Human interface

Client is typically a browser 
using HTML/CSS/JavaScript

Web Service vs. Web Server
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Create a Jarvis web service in 5 minutes or so…

JARVIS Exercise 1
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We defined and started a web service
 Defined an "endpoint" (the sum function)

 Created the server using j←Jarvis.New ''

 Started the server using j.Run

 Used HttpCommand as a client

 Used a browser to open Jarvis' built-in HTML page that contains 
a JavaScript client to communicate with the web service

What just happened?
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What happened under the covers?

JavaScript running in the browser created an XMLHttpRequest and sent the contents 
of the input window as its payload

Jarvis received the request and converted the payload to APL

Jarvis called the endpoint, passing the APL payload as its right argument

sum did its thing and returned an APL array as its result

Jarvis translated the result into JSON and sent it back to the client as the response 
payload

JavaScript in the client updated the output area on the page with the response 
payload
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JSON
Endpoints are result-returning monadic or dyadic 
APL functions

All requests use HTTP POST

Request and response payloads are JSON

Jarvis handles all conversion between JSON and APL

Use this when your endpoints are "functional"

REST
Write a function for each HTTP method your 
service will support (GET, POST, PUT, etc)

Each function will:

Take the HTTP request as its right argument

Parse the requested resource and query 
parameters/payload

Take some appropriate action

Consider this when you are managing resources

GET requests are easier for the client

Jarvis' Two Paradigms



Web Services55

Client Request:
POST /GetPortfolio

{myid: 12345}

Server Code:

    ∇r←GetPortfolio payload
[1]  r←CalcPortfolio payload.myid
    ∇

Jarvis' Two Paradigms - JSON
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Client Request:
GET /Portfolio?myid=12345

Server Code:
    ∇r←GET req
[1] :Select req.EndPoint
[2]   :Case '/portfolio'
[3]      myid←2⊃⎕VFI req.QueryParameters req.GetHeader 'myid'
[4]      r←CalcPortfolio myid
[5]   :Case '/somethingelse'
[6]      ⍝ something else code
[7]   :Case '/yetanotherthing'
[8]      ...

Jarvis' Two Paradigms - REST
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JSON – JavaScript Object Notation

String: "this is a string"

Number: 42

Array: [1,2,"hello world"]

Object: {"name": "value"}

JSON in Brief



Web Services58

ns←⎕NS ''      
      ns.(name age)←'Dyalog' 40
      array←2 2⍴(2 2⍴⍳4)'Jarvis'('APL' 23)ns

      ⎕JSON⍠('HighRank' 'Split')⊢array 
[[[[1,2],[3,4]],"Jarvis"],[["APL",23],{"age":40,"name":"Dyalog"}]]

JSON in Brief
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CodeLocation 

 is where Jarvis will look for your Endpoint code.

 defaults to #

 can be the name of or reference to an existing namespace

      j.Stop

      'myApp' #.⎕NS '' ⍝ create a namespace

      myApp.Rotate←⌽   ⍝ define an endpoint

      j.CodeLocation←#.myApp ⍝ or '#.myApp'

      j.Start

CodeLocation
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CodeLocation can also be the name of a folder from where Jarvis will 
load your code into a namespace named #.CodeLocation. 

This is similar to what Link does

If the folder is a relative file name, it will be relative to the path of:

 your workspace if you are running in a saved workspace

 your JarvisConfig file (we'll get to what this is in a couple slides)

 the Jarvis source file

CodeLocation
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Jarvis will look in only CodeLocation and below for your code.

Jarvis will consider any result-returning functions that are monadic, 
dyadic, or ambivalent as endpoints for your service.

This includes functions in subordinate namespaces and public methods in 
classes. For example: #.CodeLocation.Utils.center is exposed as 
/Utils/center.

CodeLocation
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You can use IncludeFns and ExcludeFns to restrict what functions 
seen as endpoints.

Both can contain individual function names, simple wildcarded expressions, 
or regex (or any combination thereof).

      j.ExcludeFns←'*.*' '∆*'
      j.IncludeFns←'GetPortfolio' 'BuyStock'

In the case where there's a conflict between IncludeFns and 
ExcludeFns, ExcludeFns wins.

Filtering Endpoints
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You can specify all your Jarvis settings in a JSON or JSON5 file.

{
  "Port": 22321,
  "CodeLocation": "./myApp"
}

JarvisConfig File
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j.Debug←0  ⍝ Jarvis traps all errors
      j.Debug←1  ⍝ Stop on error
      j.Debug←2  ⍝ Stop before calling your code
      j.Debug←4  ⍝ Stop after receiving request
      j.Debug←8  ⍝ Log Conga events to the session

Codes are additive.

When Debug is 0, Jarvis has a "safety net" :Trap 0 that will catch any 
untrapped errors in your endpoint code and report an HTTP 500 Internal 
Server Error status.

Debugging Jarvis
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ErrorInfoLevel controls how much information is sent in the HTTP 
status message when an error occurs.

  j.ErrorInfoLevel←0  ⍝ no additional information

  j.ErrorInfoLevel←1  ⍝ APL error name

  j.ErrorInfoLevel←2  ⍝ + fn[line] where error occurred

Debugging Jarvis
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If your endpoint function is dyadic or ambivalent, Jarvis will pass the 
request object as the left argument. 

The request object is the same for both JSON and REST paradigms.

The request object contains all the information from the client request as 
well as some useful functions to manipulate that information.

Optional Left Argument – Request Object
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How should you handle errors that occur in your endpoint code?

Options include:

 Let Jarvis' safety net handle it

 Trap or preemptively check for the error and

 use req.Fail to convey the error

 send information back in the response payload

Debugging - Error Trapping Endpoints
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Exercise Time – Jarvis Exercise 2
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There are several points (hooks) in Jarvis' flow where you can inject custom behavior.

You specify these by setting a hook setting to the name of a function to execute.

AppCloseFn - called when Jarvis shuts down

AppInitFn - called when Jarvis starts

AuthenticateFn - called on every request to authenticate the request

SessionInitFn - called when a new session is initialized

ValidateRequestFn - called on every request to perform any other validation you need

User "Hooks"
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Jarvis can use HTTP Basic authentication by default. 
This can be disabled by setting HTTPAuthentication to ''

Credentials are base64-encoded (not encrypted) and sent in the 
Authorization HTTP header

When using HTTP Basic authentication, Jarvis will set the request UserID 
and Password settings.

Once authenticated, browsers will send credentials with every subsequent 
request.

HTTP Basic Authentication
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You do not have to use HTTP Basic Authentication.

You can implement your own scheme – for instance passing credentials in 
the request payload, or using a token-based scheme with the 
Authorization header

Other Forms of Authentication
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AuthenticateFn specifies the name of a function to perform authentication.

AuthenticateFn should return a 0 if the authentication succeeds or is not 
necessary.

If you use HTTPS, you can safely transmit credentials in plaintext. Otherwise, you 
should be running on a network you trust or using salt and encryption to encrypt 
credentials.

Authenticating
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Exercise Time – Jarvis Exercise 3
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If you need to maintain state on the server between requests, Jarvis supports sessions by 
including a reference to a session namespace in the request object – req.Session

This means endpoints that need to reference the session MUST take a left argument (the 
request object).

If you specify SessionInitFn, it's the name of the function to perform session initialization.

The function specified by SessionInitFn takes the request object as its right argument.

      j.SessionInitFn←'InitSession'

      InitSession←{⍵.Session.RunningTotal←0}

Maintaining State With Sessions
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Jarvis uses the following settings to control sessions:

SessionTimeout - 0 = do not use sessions, ¯1 = no timeout, 0< session timeout time (in 
minutes)

SessionIdHeader – the name of the header field for the session token

SessionUseCookie - 0 = just use the header; 1 = use an HTTP cookie

SessionPollingTime - how frequently (in minutes) we should poll for timed out sessions

Maintaining State With Sessions
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Exercise Time – Jarvis Exercise 4
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HTMLInterface controls the JSON mode's HTML interface

HTMLInterface is turned on by default in JSON mode

HTMLInterface←0 ⍝ disable the HTML interface

HTMLInterface←1 ⍝ enable the built-in HTML page

HTMLInterface←'folder' ⍝ looks for folder/index.html

HTMLInterface←'file.html' ⍝ specific file

HTMLInterface←'' 'function' ⍝ function returns HTML code

HTMLInterface
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Okay, we lied… you can use HTTP GET if you set AllowGETs←1

The JSON payload is sent in the request query string

     j.AllowGETs←1
     HttpCommand.Get 'http://localhost:8080/sum?[5,6,7]'

AllowGETs



Web Services79

Okay, we lied again… the payload doesn't have to be JSON.

If a web page has a form enctype set to multipart/form-data

And AllowFormData←1, Jarvis will process the request. 

This is useful for uploading files to Jarvis.

AllowFormData



Web Services80

Conga is Dyalog's TCP/IP utility framework.

HttpCommand and Jarvis both use Conga. 
So do other Dyalog utilities like isolate. So might your application itself.

If you have more than one component that uses Conga, the best practice is to copy 
the Conga namespace, preferably into # and then point each Conga-using utility to 
that copy.

Both HttpCommand and Jarvis have a CongaRef setting that can be set to point 
to the Conga namespace.

      (HttpCommand Jarvis).CongaRef←#.Conga

HttpCommand, Jarvis, and Conga
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Exercise Time – Jarvis/HttpCommand
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