
Elsinore 2023

D02 - The Road Ahead

Morten Kromberg, CTO

The Road Ahead – Dyalog'231

The Road Ahead – Dyalog'232

Geoff has Retired (!)
 With John Scholes, Geoff Streeter implemented

Dyalog APL v1.0 in 1981-1983

 We hope to welcome Geoff back for a retrospective
talk at Dyalog'24 in (September 15-19, Glasgow)

The Road Ahead – Dyalog'233

40 years in pursuit of excellence

Decade Leaders in…
1980's The best APL for Workstations (X-Windows, ⎕SM)

1990's The best APL for Microsoft Windows (⎕WC)

2000's The best APL for Microsoft .NET (⎕USING)

2010's The most complete Array Language (+⌿÷≢) ⍤⌸@⍸⌺

2020's The best APL for Cloud Computing (☁️)

The Road Ahead – Dyalog'234

Major Milestones in 1st 30 years

 1983: APL2 Nested Arrays + SHARP APL
Component Files, Error Trapping, etc

 1990: Namespaces, Windows GUI

 1995: Control structures (If/Then/Else,
Repeat/Until, exception handling, and so on)

 1996: Functional programming: dfns provide
lexical scope and lambda-style expressions

 2006: Object oriented programming, tighter
integration with .NET & OO frameworks

 2013: Rank (⍤) and Key (⌸) operators

 2014: Point-free or "tacit" syntax similar to that
in the J programming language

 2014: Futures and isolates for parallel
programming

More highlights of the last decade

 2015: macOS, RIDE, JSON, Secure Sockets

 2016: Cross Platform File Functions, load & edit
Unicode Test Files using editor

 2017: CSV, HTTP Support in Conga,
HTMLRenderer, Where (⍸), At (@), Stencil
(⌺) and Nest/Partition (⊆)

 2018: aplssh & pynapl, APL as a DLL, Total Array
Ordering, JSONServer

 2019: Link, Unregistered non-Commercial
Version, Headless mode, Containers

 2020: ⎕C, ⎕DT, constant (⍨) over (⍥)
and atop (⍤), unique mask (≠), .NET Core Bridge,
LOAD text files, text config files

 2022: Basic Licence, Shell Scripts, ⎕ATX

Performance increased consistently during
most of this decade.

The Road Ahead – Dyalog'235

Major Milestones in 1st Half of the Fifth Decade
 2024 / Tool Projects

 Tatin & Cider become "mainstream"
 Jarvis & WebSocket integration
 One secret project, come to Glasgow ☺!

 2025 / v20:
 Literal Array Notation
 .NET Generics
 HTMLRenderer (& Conga?) as Open-Source

extensions
 Android version?

 2026 / v21:
 Co-dfns compiler integrated with Dyalog APL
 All asynchronous operations return futures
 Dual / Under, Differentiation

 2027 / v22:
 Multiple Numeric Towers: 64-bit integers,

Rationals, Unlimited-precision integers

(NB Mortens dreams, NOT promises!)

More highlights of the last decade

 2015: macOS, RIDE, JSON, Secure Sockets

 2016: Cross Platform File Functions, load & edit
Unicode Test Files using editor

 2017: CSV, HTTP Support in Conga,
HTMLRenderer, Where (⍸), At (@), Stencil
(⌺) and Nest/Partition (⊆)

 2018: aplssh & pynapl, APL as a DLL, Total Array
Ordering, JSONServer

 2019: Link, Unregistered non-Commercial
Version, Headless mode, Containers

 2020: ⎕C, ⎕DT, constant (⍨) over (⍥)
and atop (⍤), unique mask (≠), .NET Core Bridge,
LOAD text files, text config files

 2022: Basic Licence, Shell Scripts, ⎕ATX

Performance increased consistently during
most of this decade.

The Road Ahead – Dyalog'236

Major Milestones in 1st Half of the Fifth Decade
 2024 / Tool Projects

 Tatin & Cider become "mainstream"
 Jarvis & WebSocket integration
 One secret project, come to Glasgow ☺!

 2025 / v20:
 Literal Array Notation
 .NET Generics
 HTMLRenderer (& Conga?) as Open-Source

extensions
 Android version?

 2026 / v21:
 Co-dfns compiler integrated with Dyalog APL
 All asynchronous operations return futures
 Dual / Under, Differentiation

 2027 / v22:
 Multiple Numeric Towers: 64-bit integers,

Rationals, Unlimited-precision integers

(NB Mortens dreams, NOT promises!)

And… without dates attached

 Universities start offering APL courses
 Not as part of a "comparative" course

 APL recognised as a respectable tool for
modeling machine learning and quantum
computing

 First commercially significant APL application
created by someone who learned APL in this
millennium

 "Full Stack" Web development in APL

The Road Ahead – Dyalog'237

Ken Iverson's Blackboard
arrives in Bramley (2010)

The Road Ahead – Dyalog'238

Dyalog … The Next Generation

Aaron (ACE) Adam (AE) Rich (AE) Josh (A) Stine (D) Karta (C)

Silas (C) Peter (C) Jesus (E)

Legend:

A = APLer
C = C developer
D = Admin
E = Doc/Evangelism

2022

The Road Ahead – Dyalog'239

Dyalog … The Next Generation

Silas (C) Peter (C) Jesus (E)

2022

Stefan (AE) Aarush (AC) Abs (I)Jada (D) Mike (DE)

+

Asher (ACE) Kamila (ACE)

(Summer Interns)

Legend:

A = APLer
C = C developer
D = Admin
E = Doc/Evangelism
I = IT

2023

The Road Ahead – Dyalog'2310

 Santiago Núñez-Corrales PhD, Markos Frenkel, Bruno de Abreu
National Center for Supercomputing Applications

 A Quantum Computing Library for APL

 Jesús Galán López (Ghent University)
 Metallurgy with APL

 Asher Harvey-Smith (University of Warwick)
 (and Summer Intern at Dyalog)

Academic Collaboration

Tuesday 14:00 Teaching Algebra with APL
(Asher Harvey-Smith, U. Warwick)

Tuesday 13:00 quAPL
(Markos Frenkel, NCSA/U.Illinois)

Tuesday 13:30 APL and Metallurgy
(Jesús Galán López, Ghent U.)

Wednesday 11:00 Grain Growth
and Array Programming
(Jesús Galán López, Ghent U.)

The Road Ahead – Dyalog'2311

The Road Ahead – Dyalog'2312

 Can you host a young(er)
member of our team for 3-
5 days?

 Or perhaps even run a
small consulting project
with 1 senior + 1 junior
Dyalogger?

The Road Ahead – Dyalog'2313

2022 Road Map 2023…

The Road Ahead – Dyalog'2314

 Hired lots of new people
 Adjusted Created processes to manage growth
 Summer interns (Wonderful!)
 Two .NET bridges
 Two macOS variants to build & sign
 ARM64 version for the Macs, Pi and AWS Graviton
 Cumulative 3-4 month delay caused collision with Dyalog'23

➢ New Long Term Support version of .NET (8.0) on November 8th
➢ Want to test with 8.0 before General Availability
➢ Official Beta Testing to start mid-November

Why v19.0 is Late…

Excuses

(January 2024)

Excuses

Excuses

The Road Ahead – Dyalog'2315

 Platform Support / Distribution
 64-bit ARM support

 Mx Macs, Pi 4&5, AWS Graviton

 Enhanced .NET Bridge
 Framework vs new .NET versions

 Bound executables on all platforms

 Building Production Systems
 Token range reservation

 WS FULL handling

 NCOPY/NMOVE callbacks

 Developer Productivity / IDE
 Source "as typed" by default

 Multi-line input on by default

 HTMLRenderer updates

 Link 4.0: Support for text data

 HttpCommand client, Jarvis web service

 Installing & Managing APL
 Multiple session files

 Health Monitor

Highlights Version 19.0

The Road Ahead – Dyalog'2316

Service Orientation

A rapidly increasing proportion of new APL code is delivered
as services

 Jarvis wraps APL code as HTTP/JSON or RESTful
services on any platform

 https://github.com/dyalog/jarvis

 Off-the-shelf docker containers containing Dyalog APL
(optionally with Jarvis)

 HttpCommand is our HTTP client

HTTP(s) / JSON

The Road Ahead – Dyalog'2317

Service Orientation

HTTP(s) / JSON

Tuesday 09:00 Dyalog Tools Update
(Brian Becker)

Tuesday 09:30 Converting from COM to a Jarvis Web Service
(Finn Flug, DPC Consulting)

Tuesday 11:00 Dyalog, AWS, Jarvis, Docker…What's Not to Like?
(Claus Madsen, FinE Analytics)

Tuesday 16:45 Dyalog + Kafka = True?
(Stefan Kruger)

Monday 15:15 Transforming and Streamlining a Complex Process
(Mark Wolfson, BIG)

Monday 14:45 APL Worker Bees
(Stig Nielsen, SimCorp)

The Road Ahead – Dyalog'2318

64-bit ARM chips appearing in many places

 M1, M2 & M3 Macs

 Raspberry Pi – 64 Bit

 Amazon Web Services "Graviton"

Arm64

ARM64

Tuesday 10:00 Dyalog on ARM64
(Ron Murray)

The Road Ahead – Dyalog'2319

The Road Ahead – Dyalog'2320

The Road Ahead – Dyalog'2321

The Road Ahead – Dyalog'2322

Apple Hardware

1979: 68000
1994: POWER
2005: Intel x64
2021: ARM64

 Version 19.0 will be available in two
versions for macOS:
 ARM64: M1, M2 and soon M3 based Macs

 Intel x64: For older Macs

 64 bit, Unicode only

 NB: Version 19.0 will be the last
version to support Intel-based Macs.

Dyalog APL for ARM-based Macs

The Road Ahead – Dyalog'2323

Classic
 Down to no more than half a

dozen significant clients
 More than half of these

actively planning - or working
on - moving to Unicode

 May soon decide to offer
Classic on IBM AIX only

32 Bit
 Rapidly dwindling user base
 Difficult to test due to lack of

support from operating
systems and other frameworks

 Discounted price will be
removed next year; 32 will cost
the same as 64.

Sun is Setting on Classic & 32 Bit

Neither are for sale to new users or supported on new platforms

Tuesday 16:45 Return of Uncle Andy's Fireside Chat
(Uncle Andy)

The Road Ahead – Dyalog'2324

 .NET has been around for 20+ years. The old "Framework" is being replaced
by an open source, cross-platform .NET, initially known as ".NET Core".

 Dyalog v18.0 added a bridge to .NET Core 3, to complement the 20 year old
bridge to the .NET Framework.

 v18.2 officilly supported "Core" 3.1 but works with 5.0 and later
 v19.0 targets 8.0 (Long Term Support version due on Nov 8th 2023)

[Microsoft].NET History

Name Platforms Version Numbers

Microsoft.NET Framework Windows 1 2 3 4.0 4.8.1

".NET Core" Windows Linux macOS 1 2 3

".NET" Windows Linux macOS 5.0 6.0 7.0 8.0

The Road Ahead – Dyalog'2325

 Adds support for .NET 6, 7, 8 …
 Tested with 6.0 & 8.0 - and 4.8 (aka ".NET

Framework")
 Will be shipped configured for 8.0

 Can export APL code as .NET assemblies
 Will allow embedding APL code in .NET

frameworks like ASP.NET Core, etc

v19.0 .NET Bridge

.NET 8.0 will be the
Long Term Support
version on Nov 8th

The Road Ahead – Dyalog'2326

A bound executable is a file which combines an
interpreter and a workspace into a single .exe file

 "Always" been available under Windows

 In v19.0 also available for Linux

 Maybe MacOS soon

 (but you will need to sign the result)

 In the longer term, I expect we will look at
encrypting and signing application code

Bound Executables

The Road Ahead – Dyalog'2327

 System functions ⎕TGET and ⎕TPUT allow threads to
synchronise execution, and pass values to each other using
numbered "tokens".

 New system function ⎕TALLOC allocates token ranges, allowing
independent components to avoid using the same tokens.

 ⎕TALLOC returns a single integer n, granting the right to use
floating-point token ids in the range < n , n+1 >

 NB not including the (integer) end points
 This allows old-style integer tokens to be used by existing

applications without conflicting with new modules

Token Range Reservation

The Road Ahead – Dyalog'2328

 IF a WS FULL leaves VERY little free space,
THEN the interpreter and IDE can malfunction
 For example, a runaway recursion can leave only a few bytes

of free workspace
 Error trapping may not be possible (system might just stop)

 Version 19.0 allocates 1% of MAXWS as a buffer
which is released on WS FULL
 Allows WS FULL traps to be safely processed

 (the reservation size is configurable)

 After successful trap handling, space is re-acquired

WS FULL Handling

The Road Ahead – Dyalog'2329

 Historically, Dyalog APL has re-generated source code from
tokenised code when an editor is opened.
 This does not preserve white space and constants exactly as typed by the

user.

 For several releases, Dyalog APL has preserved source "as
typed" when a function or operator was created using ⎕FIX

2 ⎕FIX 'file://myapp/foo.aplf'

 From version 19.0, the default is to preserve source
as typed within the workspace for *all* fns and ops
 NB: Old behaviour can be selected if desired.

Source "as typed" by default

The Road Ahead – Dyalog'2330

Multi-line input On by Default

The Road Ahead – Dyalog'2331

Use of the HTMLRenderer continues to grow.

New features include:

 ExecuteJavaScript (asynchronous)

 AllowContextMenu

 Get/SetZoomLevel

 IsLoading + LoadEnd event

HTMLRenderer updates

The Road Ahead – Dyalog'2332

HTMLRenderer – what's that?
pic←'https://www.konventum.dk/media/jjcjop23/carousel_damgaard_1135x604.png'
'MyForm' ⎕WC 'HTMLRenderer' ('Hello Dyalog''23!

')

Chromium
Embedded
Framework

(CEF)

The Road Ahead – Dyalog'2333

Bundled with v19.0:

 Link v4.0, with support for simple text vectors, vectors of
text vectors, and character matrices in simple text files,
configuration files, many small features & fixes

 Prototypes of the Cider project manager and the Tatin
package manager client will be bundled with v19.0

Source Code Management
Productivity

& IDE

Link
(source)

Cider
(projects)

Tatin
(packages)Monday 16:45 Using Packages

(Morten Kromberg)

Monday 16:15 Evolution of APLTree and APL-cation
(Kai Jaeger)

The Road Ahead – Dyalog'2334

(… many more of Kai's packages skipped …)

The Road Ahead – Dyalog'2335

(Potentially, at least)

Packages Coming in 2024?

Wednesday 10:00 Statistical Libraries for Dyalog
(Josh David)

Wednesday 09:30 A YAML Parser in APL
(Brandon Wilson, Effective Altruism)

Tuesday 16:45 Dyalog + Kafka = True?
(Stefan Kruger)

Thursday 11:00 Vega Charts with Dyalog
(Rich Park)

The Road Ahead – Dyalog'2336

Experimental TCP-based monitor:

 Regular updates on (for example) :

 CPU consumption

 Memory statistics

 Are any threads suspended?

)SI stack and Error information

 Notification on

 untrapped error

 ws compaction

 Exact execution location if "breadcrumbs" enabled

 Information about whether a RIDE connection is possible

Health Monitor

The Road Ahead – Dyalog'2337

["Facts",
{"Facts": [{
"ID": 2, "Name": "AccountInformation",
"Value": {
"ComputeTime": 438,
"ConnectTime": 46973,
"KeyingTime": 0,
"UserIdentification": 0

}},{
"ID": 3, "Name": "Workspace",
"Value": {
"Allocation": 33882064,
"AllocationHWM": 33882064,
"Available": 2144207480,
"Compactions": 2,
"FreePockets": 186682,
"GarbageCollections": 0,
"GarbagePockets": 0,
"Sediment": 2120,
"Used": 3276168,
"UsedPockets": 23209,
"WSID": "CLEAR WS"

}},{
"ID": 6, "Name": "ThreadCount",
"Value": {
"Suspended": 1,
"Total": 2

}}
],
"Interval": 5000,
"UID": "1 1"
}]

["PollFacts",{"Facts":["AccountInformation","Workspace","ThreadCount"],"Interval":5000,"UID":"1 1"}]

Health Monitor Example

The Road Ahead – Dyalog'2338

Not to be forgotten:
 We closed a LOT of "issues"

 Tricky dfn scoping issues were fixed \☺/
 Significant contribution from new team members

 Unfortunately the list of open issues is growing
 …mostly because we're doing more, better testing
 New users with new usage patterns
 New employees finding bugs & logging "WIBNIs*"

Highlights of v19.0
*

Wouldn't
It
Be
Nice
If …

The Road Ahead – Dyalog'2339

Transferred from v19.0
 Resume Optimisation Work
 .NET Bridge "enhancements"

 Support "Generic" methods & classes

 More HTMLRenderer improvements
 Work on open-sourcing it

 Health Monitor
 Script Engine Support
 ⎕NATTRIBUTES

Next Set of Projects
 Array Notation
 Token-by-token Debugging
 Probably some New Operators
 Query Platform Features
 New "Shell" System Command
 Virtual "Execution Environments"
 Design / Prototyping of Async

Sketch of Version 20.0 (Q2/2024)

The Road Ahead – Dyalog'2340

https://aplwiki.com/wiki/Array_notationArray Notation

https://aplwiki.com/wiki/Array_notation

The Road Ahead – Dyalog'2341

 Proposal published – awaiting community feedback
 https://aplwiki.com/wiki/Array_notation

 APL model exists in Link and
⎕SE.Dyalog.Array.Serialise|Deserialise

 Hope to start C implementation in v20.0

Array Notation

Thursday 10:00 An Implementation of APL Array Notation
(Kamila Szewczyk, Saarland University - Dyalog Summer Intern)

https://aplwiki.com/wiki/Array_notation

The Road Ahead – Dyalog'2342

 Critical for adoption of APL by new generation of users

 Independent from v20.0 projects, but in same timeframe:
 Project Management - Cider

 Package Management - Tatin

 Link 5.0 with a "Crawler" as backup / alternative to File System Watcher

 Voice opinions to Gilgamesh Athoraya, Kai Jaeger, Rich Park,
Stefan Kruger, or myself.

Source Code Management

The Road Ahead – Dyalog'2343

 Closely related to Projects & Packages

 A virtual environment defines
 A specific version of Dyalog APL

 With a set of installed packages

 And a set of environment variables

 Allows development or maintenence of
applications in controlled / static settings

Virtual Environments

The Road Ahead – Dyalog'2344

 Initial focus on performance of ∊ and ⍳

 Instrumented interpreter can collect data about
calls made by running applications

 In version 20.0, we hope to implement the first
improved algorithms

Optimisation Work

Monday 14:00 Performance of Set Functions
(Karta Kooner)

The Road Ahead – Dyalog'2345

 Medium term: Separate HTMLRenderer from APL and make
it a separate, open source component
 Not sure this will make it to v20.0

 Until then, we may release regular updates to the
HTMLRenderer to pick up new versions of CEF
 When there are critical security patches to Chromium

 These releases may contain feature tweaks
 File Upload, Multiple Modal instances

HTMLRenderer Enhancements

The Road Ahead – Dyalog'2346

 Continue the move towards portable configuration files

 Currently require a startup script on non-Windows platforms
 Implement Good defaults for all settings under Linux, macOS, …

 All settings configurable via text config files

 Eliminate the need for the script

 Remove need for the Windows Registry
 Windows interpreter already has good defaults if no config found

 Move all "interpreter settings" to text (JSON5) config files

 Leave IDE settings in the Registry (as RIDE settings are in a JSON
repository)

This might not make 19.0 20.0, but remains an important medium term
goal.

Configuration Files

The Road Ahead – Dyalog'2347

 The v19.0 bridge to "New .NET" is roughly on
par with the Framework bridge

 Potential new features in v20.0
 Generics
 Delegates
 (Tools to load/manage .NET dependencies)

 NB: New features will probably NOT be back-
ported to the Framework bridge

.NET Bridge Enhancements

Tuesday 15:15 Dyalog Version 20.0 – Part 2
(John Daintree)

The Road Ahead – Dyalog'2348

 Not saying any more, John is up next

Token-by-token Debugging

Monday 10:15 Dyalog Version 20.0 – Part 1
(John Daintree)

The Road Ahead – Dyalog'2349

 A small set of APL primitives is still missing

 See Adam's presentation at Dyalog'22
 D15: Filling the Core Language Gaps

 And later today:

New Primitives / System Functions

Monday 11:15 Setting and Getting Variable Values
(Adám Brudzewsky)

Tuesday 16:15 Giving Key a Vocabulary
(Adám Brudzewsky)

The Road Ahead – Dyalog'2350

Possible New Primitives

The Road Ahead – Dyalog'2351

 Work on the .NET bridge makes it clear to us
that modern APIs are often asynchronous

 A future .NET Bridge needs to support this
elegantly – see John Daintree's "2022
Conference Edition Part 3" talk from
Dyalog'22
 Async … Await

 And/or Futures

Design / Prototyping of "Async"

The Road Ahead – Dyalog'2352

Grand Unified Theory of Async?
A dyadic parallel operator could invoke a function
in a variety of asynchronous ways, all of which would
immediately return a future:

Invoke foo in…

ns∥foo ←→ an "in process" fork of the ns

isolates∥foo ←→ a "separate process" (isolate)

 ⍬∥foo ←→ an empty isolate (current APL model)

0∥foo ←→ a green thread in current ws (like current foo&)

¯1∥foo ←→ current ws, but lazily (when value is required)

The Road Ahead – Dyalog'2353

Version 19.0 contains a prototype. Ideas for v20.0
include:
 Complete implementation of "breadcrumbs" so

it is possible to understand where an
interpreter is hanging

 Sending signals to interrupt or terminate tasks
 Discoverability: allow APL process to broadcast

services that it provides
 Switch PROFILE on and off; collect data

Health Monitor

The Road Ahead – Dyalog'2354

 I/O routines significantly refactored in v19.0
 Goal is to properly manage redirection in the future
 Changes should be invisible to users

 In v20.0, we aim to add
 The ability to change redirection under program control
 Ability to attach RIDE to a "script engine" and manage where

programme and user input come from during debugging

I/O Project

The Road Ahead – Dyalog'2355

 #! (hash bang) scripting

 We think the script engine will
be critical for attracting new users

 Still a bit of a prototype
 Needs to be debug-able via RIDE

 (awaiting next phase of I/O project)

Script-Engine Support

The Road Ahead – Dyalog'2356

 ⎕SHELL to replace existing ⎕SH
 Interruptible

 Manage stdin, stdout & stderr

 ⎕PROFILE enhancements
 Ideas: capture thread id, non-aggregating mode, memory

allocations, binary export format

Other Small but Important Things
Monday 11:45 Revisiting ⎕SH and ⎕CMD
(Peter Mikkelsen)

The Road Ahead – Dyalog'2357

Transferred from v19.0
 Resume Optimisation Work
 .NET Bridge "enhancements"

 Support "Generic" methods & classes

 More HTMLRenderer improvements
 Work on open-sourcing it

 Health Monitor
 Script Engine Support
 ⎕NATTRIBUTES

Next Set of Projects
 Array Notation
 Token-by-token Debugging
 Probably some New Operators
 Query Platform Features
 New "Shell" System Command
 Virtual "Execution Environments"
 Design / Prototyping of Async

Sketch of Version 20.0 (Q2/2024)

The Road Ahead – Dyalog'2358

Major Milestones in 1st Half of the Fifth Decade
 2024 / Tool Projects

 Tatin & Cider become "mainstream"
 Jarvis & WebSocket integration
 One secret project, come to Glasgow ☺!

 2025 / v20:
 Literal Array Notation
 .NET Generics
 HTMLRenderer (& Conga?) as Open-Source

extensions
 Android version?

 2026 / v21:
 Co-dfns compiler integrated with Dyalog APL
 All asynchronous operations return futures
 Dual / Under, Differentiation

 2027 / v22:
 Multiple Numeric Towers: 64-bit integers,

Rationals, Unlimited-precision integers

(NB Mortens dreams, NOT promises!)

And… without dates attached

 Universities start offering APL courses
 Not as part of a "comparative" course

 APL recognised as a respectable tool for
modeling machine learning and quantum
computing

 First commercially significant APL application
created by someone who learned APL in this
millennium

 "Full Stack" Web development in APL

And… not forgotten

 VS Code Integration (Debug Adapter Protocol)

 Inverted Tables (aka "Magic Arrays")

 WASM?

The Road Ahead – Dyalog'2359

Hope that was all clear!

	Slide 0: D02 - The Road Ahead
	Slide 1
	Slide 2: Geoff has Retired (!)
	Slide 3: 40 years in pursuit of excellence
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8: Dyalog … The Next Generation
	Slide 9: Dyalog … The Next Generation
	Slide 10: Academic Collaboration
	Slide 11
	Slide 12
	Slide 13
	Slide 14: Why v19.0 is Late…
	Slide 15: Highlights Version 19.0
	Slide 16: Service Orientation
	Slide 17: Service Orientation
	Slide 18: Arm64
	Slide 19
	Slide 20
	Slide 21
	Slide 22: Dyalog APL for ARM-based Macs
	Slide 23: Sun is Setting on Classic & 32 Bit
	Slide 24: [Microsoft].NET History
	Slide 25: v19.0 .NET Bridge
	Slide 26: Bound Executables
	Slide 27: Token Range Reservation
	Slide 28: WS FULL Handling
	Slide 29: Source "as typed" by default
	Slide 30: Multi-line input On by Default
	Slide 31: HTMLRenderer updates
	Slide 32: HTMLRenderer – what's that?
	Slide 33: Source Code Management
	Slide 34
	Slide 35: Packages Coming in 2024?
	Slide 36: Health Monitor
	Slide 37
	Slide 38: Highlights of v19.0
	Slide 39: Sketch of Version 20.0 (Q2/2024)
	Slide 40: Array Notation
	Slide 41: Array Notation
	Slide 42: Source Code Management
	Slide 43: Virtual Environments
	Slide 44: Optimisation Work
	Slide 45: HTMLRenderer Enhancements
	Slide 46: Configuration Files
	Slide 47: .NET Bridge Enhancements
	Slide 48: Token-by-token Debugging
	Slide 49: New Primitives / System Functions
	Slide 50: Possible New Primitives
	Slide 51: Design / Prototyping of "Async"
	Slide 52: Grand Unified Theory of Async?
	Slide 53: Health Monitor
	Slide 54: I/O Project
	Slide 55: Script-Engine Support
	Slide 56: Other Small but Important Things
	Slide 57: Sketch of Version 20.0 (Q2/2024)
	Slide 58
	Slide 59

