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The system CAPP – Computer Aided Process Planning

Sandvik AB

• APL2 v3.0.0 (LogOn)

• z/OS 2.3



Project 
objective

Migrate the CAPP system off of 
mainframe and APL2 onto 
Dyalog APL on Windows and Linux.

• Language differences

• User interface

• Database and files

• Network communication (DB2, webserver, 
MQ, etc.)



System overview – Current

MF

CAPP
(APL2)

DB2

UI 
(GDDM)

CAPP 
DB MQ

Web clients

Files

Ext. 
tables

Windows

CAPP
(Dyalog APL)

Bridge

UI 
(HTML5)



Source control

• Import APL2 source into Git (main branch)
• Use backups as source for individual commits to 

add some history

• Create “dyalog” branch for migration work

• Apply migration conversion to dyalog branch

• Carry on migration work in dyalog branch



Source control

• Update “main” branch (import from APL2)

• Create new “update” branch from “dyalog” 
for merge

• Merge “main” into “update”
• Git recognises conflicts, even after re-structuring 

in “dyalog” branch

• Apply migration conversions to modified files 
(identified using git diff)

• Review and test

• Merge “update” into “dyalog” branch
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Language 
differences

• Legal APL names (high minus)

• Ambivalent functions

• Replicate each

• Control structures (conditional branch/execute)

• System variables (⎕TZ, ⎕ET, ⎕FC, ⎕PR)

• System functions (⎕EA, ⎕EM, ⎕ES, ⎕TS)

• Format by example (‘0000’⍕)

• Each operator (prototype on empty)

• Bracket indexing 

• A B C[index] 

• A B (C[index])

• Assign to single name

• A B C←1 2 3

• A B (C←1 2 3)

• APL2 namespace/package



User interface 
(GDDM)

• Keep UI code unchanged (GDDM control 
messages)

• GDDM emulator in javascript (frontend)
• xterm for terminal emulation
• Svg.js for graphics
• Support both browser (thin client) 

and HTMLRenderer (fat client)

• WebSocket server (backend)
• Bridge between shared variable access 

and web client
• Manage async communication with 

client



GDDM – Menus and panels 



GDDM – Flowchart editor



Database

• DB2 database shared with other systems

• CAPP requires access to tables owned by 
other systems

• APL2 tables serialised with ATR (array to 
record, IBM serializer) and stored in CLOB 
columns

• DB2 columns use EBCDIC 278 
(Swedish/Finnish) but APL2 ⎕AV implied



Database
• Keep DB2 on mainframe during 

development of Dyalog version (to reduce 
performance hit for current users).

• Replace ATR format with SCAR (to allow 
both for Dyalog and APL2)

• Access DB2 from Dyalog via ODBC



Network 
comms

Encrypt all TCP/IP connections to allow secure 
communication between cloud and mainframe.

• No native way to create secure TCP connections 
in APL2 

• AT-TLS
Application Transparent - TLS
Policy controlled upgrade of TCP connections to 
use TLS. No change required to APL code.

• DB2 Connect server – add support for secure 
clients

• MQ manager – encrypted channels



Cloud solution
How to build, test and deploy APL code in the 
cloud?

• Azure Repos

• Azure Pipelines

• Azure Container Registry

• Azure Kubernetes



Docker

Different requirements for build and 
deployment

Build/test:

• Tatin

Deployment:

• .NET runtime

• MQ client

• ODBC + DB2 driver



Docker
architecture –
Dyalog Images

Base Image Instructions Resulting image Size

debian
:buster-slim

Add:
Dyalog
ODBC
Tatin

dyalog/v182
:latest

240 MB

dyalog/v182
:latest 

Add .NET 
Runtime 

dyalog/v182
:dotnet

430 MB



Docker
architecture –
Build and 
Deploy .dws

In pipeline:

1. Use base image to build dws

2. Build Docker Image for service
1. Base on dyalog with or w/o dotnet

2. Add other dependencies:
• DB2 drivers

• MQ Client

3. Add dws

3. Push image to Container Registry

4. Deploy to Kubernetes



Azure pipeline



Windows

DFS

System overview – Next step
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Docker containersDFS

System overview – End goal
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Thanks for listening


