Lift-Off from APL2 Mainframe
to Dyalog in the Cloud

Migration of APL2 system from mainframe to Dyalog APL on Linux

Gilgamesh Athoraya

%HAMAHEA

The System CAPP — Computer Aided Process Planning

Sandvik AB
e APL2 v3.0.0 (LogOn)
e 2/0S 2.3

Migrate the CAPP system off of

: mainframe and APL2 onto
PrOJ ect Dyalog APL on Windows and Linux.

Objective Language differences

e User interface
e Database and files

 Network communication (DB2, webserver,
MQ, etc.)

System overview — Current

Windows

Ul
(HTMLS)

»
»

Bridge CAPP
' (Dyalog APL)

Source control

Import APL2 source into Git (main branch)

* Use backups as source for individual commits to
add some history

Create “dyalog” branch for migration work
Apply migration conversion to dyalog branch
Carry on migration work in dyalog branch

* Update “main” branch (import from APL2)

* Create new “update” branch from “dyalog”
for merge

Source control * Merge “main” into “update”

Git recognises conflicts, even after re-structuring
in “dyalog” branch

Apply migration conversions to modified files
(identified using git diff)

Review and test
Merge “update” into “dyalog” branch

Git graph on development

Work done
on APL2

Work done
on APL2

Work done
on APL2

»
> >

»
P

Merge main APL2-Dyalog
conversions

> dyalog
APL2-Dyalog Xt Migration
conversions work

»
|

Merge update
into dyalog

Legal APL names (high minus)

Ambivalent functions

Replicate each

Control structures (conditional branch/execute)

I_a n g U a ge System variables ([]Tz, []ET, [|FC, [|PR)

System functions ([|EA, []EM, [|ES, []TS)

differences

Format by example (‘0000’ ¢)
Each operator (prototype on empty)

Bracket indexing
 ABC([index]
 AB (C[index])

Assign to single name
 ABC«123
 AB(C<&<123)

APL2 namespace/package

* Keep Ul code unchanged (GDDM control
messages)
e GDDM emulator in javascript (frontend)
e xterm for terminal emulation

User interface * Svg.js for graphics

(G D D I\/l) e Support both browser (thin client)
and HTMLRenderer (fat client)

* WebSocket server (backend)

* Bridge between shared variable access
and web client

* Manage async communication with
client

GDDM — Menus and panels

PERSONAL MENU UG2224 - KARL DREJING

D08 daBomis=s0 8 & BR O E
PERSONAL MENU UG2224 - KARL DREJING

0 CAPP - Quotations and Orders - PROD
1 CAPP - Quotations and Orders - TEST

50 Development Menu
0 CAPP - Quotations and Orders - PROD

1 CAPP - Quotations and Orders - TEST
50 PDevelopment Menu

Alternative...........: []

Alternative__:

F8 = Exit from the CAPP system F3 = Exit from the CAPP system

48] T :00. 1 19/43

GDDM — Flowchart editor

CAPP/COR Development 22-05-23 14:02

DE0 & daBOMAcsa 8 & BR OF K

0. Routine definition 4. Catalog services
Development Menu i. Find field in drawings 4Li. Delete component
2. Tables
. A , . 3. String search in tables
?: ??::1:?e?:F;:1;;::ings :?: g:t:t:gc:;;:;::: 4_ String search in flowcharts 60. Update operation register - PROD
2. Tables 5. Check family 61. Update operation register - TEST
3. String search in tables 6. Drawings
4. String search in flowcharts 60. Update cperation register - PROD 7. Flowchart editor
5. Chec% family 61. Update operation register - TEST 8. Adjust drawing 70. Errors in family logic
s: ?:::;:g:t editor S. Test merge drawing 71. Trace XML
8. Adjust drawing 70. Errors in family logiec
9. Test merge drawing 71. Trace XML 20. Copy from TEST to PROD 50. Quotations and orders - PROD
21. Recall from PROD to TEST 91. Quotations and orders - TEST
20. Copy from TEST to PROD 90. Quotations and orders - PROD 27 . Recall from BACK to TEST
21. Recall from PROD to TEST 91. Quotations and orders - TEST

22. Recall from BACK to TEST 24_ Stop family or routine in PROD

Z4. Stop family or routine in PROD
Alternative: []

Alternative:

P F3=End

e DB2 database shared with other systems

* CAPP requires access to tables owned by

Database other systems

* APL2 tables serialised with ATR (array to
record, IBM serializer) and stored in CLOB
columns

 DB2 columns use EBCDIC 278
(Swedish/Finnish) but APL2 | |AV implied

e Keep DB2 on mainframe during
Data base development of Dyalog version (to reduce

performance hit for current users).

* Replace ATR format with SCAR (to allow
both for Dyalog and APL2)

* Access DB2 from Dyalog via ODBC

Encrypt all TCP/IP connections to allow secure
communication between cloud and mainframe.

* No native way to create secure TCP connections

Network e

COMmms e AT-TLS
Application Transparent - TLS

Policy controlled upgrade of TCP connections to
use TLS. No change required to APL code.

* DB2 Connect server — add support for secure
clients

e MQ manager — encrypted channels

How to build, test and deploy APL code in the
cloud?

Cloud solution

* Azure Repos
e Azure Pipelines
* Azure Container Registry

e Azure Kubernetes

Different requirements for build and
deployment

Build/test:
* Tatin
Deployment:

Docker

e NET runtime
e MQ client
e ODBC + DB2 driver

Docker
architecture —

Dyalog Images

Base Image

debian
:buster-slim

dyalog/v182
‘latest

Instructions

Add:
Dyalog
ODBC

Tatin

Add .NET
Runtime

Resulting image

dyalog/v182
latest

dyalog/v182
:dotnet

Docker
architecture —

Build and
Deploy .dws

In pipeline:

1.
2.

Use base image to build dws

Build Docker Image for service
1. Base on dyalog with or w/o dotnet

2. Add other dependencies:
* DB2 drivers
* MQClient

3. Adddws
Push image to Container Registry
Deploy to Kubernetes

Azure pipeline

Azure Pipeline

1. Clone repo Z. Build dws

3. Build docker image

4, Publish image

5. Deploy to kubernetes

CAFPF git repo |
dyalogh182:latest

[[m][]

i
dyalogfiv182:.dotnet DEBZ2 drivers

&

I5h MQ

|
MG Client

bl

capp.dws

sandvik/capp

"l :v I

Container reqistry

&

kubernetes cluster

System overview — Next step

[) MF Windows

J R Ul
(HTMLS5)

CAPP
(Dyalog APL)

System overview — End goal

CAPP CAPP CAPP CAPP
(Dyalog APL) (Dyalog APL) (Dyalog APL) (Dyalog APL)

CAPP CAPP
: webapp client webapp client

Thanks for listening

%HAMAHEA

