
Lift-Off from APL2 Mainframe 
to Dyalog in the Cloud

Migration of APL2 system from mainframe to Dyalog APL on Linux

Gilgamesh Athoraya



The system CAPP – Computer Aided Process Planning

Sandvik AB

• APL2 v3.0.0 (LogOn)

• z/OS 2.3



Project 
objective

Migrate the CAPP system off of 
mainframe and APL2 onto 
Dyalog APL on Windows and Linux.

• Language differences

• User interface

• Database and files

• Network communication (DB2, webserver, 
MQ, etc.)



System overview – Current

MF

CAPP
(APL2)

DB2

UI 
(GDDM)

CAPP 
DB MQ

Web clients

Files

Ext. 
tables

Windows

CAPP
(Dyalog APL)

Bridge

UI 
(HTML5)



Source control

• Import APL2 source into Git (main branch)
• Use backups as source for individual commits to 

add some history

• Create “dyalog” branch for migration work

• Apply migration conversion to dyalog branch

• Carry on migration work in dyalog branch



Source control

• Update “main” branch (import from APL2)

• Create new “update” branch from “dyalog” 
for merge

• Merge “main” into “update”
• Git recognises conflicts, even after re-structuring 

in “dyalog” branch

• Apply migration conversions to modified files 
(identified using git diff)

• Review and test

• Merge “update” into “dyalog” branch



APL2-Dyalog
conversions

Git graph on development

dyalog
x0

main
r0

main
r1

dyalog
x1

main
r2

dyalog
x2Migration

work

main
r3

update
w0

update
w1

Merge main
into update

update
w2

APL2-Dyalog
conversions

dyalog
x3

Merge update
into dyalog

Work done
on APL2

Work done
on APL2

Work done
on APL2



Language 
differences

• Legal APL names (high minus)

• Ambivalent functions

• Replicate each

• Control structures (conditional branch/execute)

• System variables (⎕TZ, ⎕ET, ⎕FC, ⎕PR)

• System functions (⎕EA, ⎕EM, ⎕ES, ⎕TS)

• Format by example (‘0000’⍕)

• Each operator (prototype on empty)

• Bracket indexing 

• A B C[index] 

• A B (C[index])

• Assign to single name

• A B C←1 2 3

• A B (C←1 2 3)

• APL2 namespace/package



User interface 
(GDDM)

• Keep UI code unchanged (GDDM control 
messages)

• GDDM emulator in javascript (frontend)
• xterm for terminal emulation
• Svg.js for graphics
• Support both browser (thin client) 

and HTMLRenderer (fat client)

• WebSocket server (backend)
• Bridge between shared variable access 

and web client
• Manage async communication with 

client



GDDM – Menus and panels 



GDDM – Flowchart editor



Database

• DB2 database shared with other systems

• CAPP requires access to tables owned by 
other systems

• APL2 tables serialised with ATR (array to 
record, IBM serializer) and stored in CLOB 
columns

• DB2 columns use EBCDIC 278 
(Swedish/Finnish) but APL2 ⎕AV implied



Database
• Keep DB2 on mainframe during 

development of Dyalog version (to reduce 
performance hit for current users).

• Replace ATR format with SCAR (to allow 
both for Dyalog and APL2)

• Access DB2 from Dyalog via ODBC



Network 
comms

Encrypt all TCP/IP connections to allow secure 
communication between cloud and mainframe.

• No native way to create secure TCP connections 
in APL2 

• AT-TLS
Application Transparent - TLS
Policy controlled upgrade of TCP connections to 
use TLS. No change required to APL code.

• DB2 Connect server – add support for secure 
clients

• MQ manager – encrypted channels



Cloud solution
How to build, test and deploy APL code in the 
cloud?

• Azure Repos

• Azure Pipelines

• Azure Container Registry

• Azure Kubernetes



Docker

Different requirements for build and 
deployment

Build/test:

• Tatin

Deployment:

• .NET runtime

• MQ client

• ODBC + DB2 driver



Docker
architecture –
Dyalog Images

Base Image Instructions Resulting image Size

debian
:buster-slim

Add:
Dyalog
ODBC
Tatin

dyalog/v182
:latest

240 MB

dyalog/v182
:latest 

Add .NET 
Runtime 

dyalog/v182
:dotnet

430 MB



Docker
architecture –
Build and 
Deploy .dws

In pipeline:

1. Use base image to build dws

2. Build Docker Image for service
1. Base on dyalog with or w/o dotnet

2. Add other dependencies:
• DB2 drivers

• MQ Client

3. Add dws

3. Push image to Container Registry

4. Deploy to Kubernetes



Azure pipeline



Windows

DFS

System overview – Next step

MF

CAPP
(APL2)

DB2

UI 
(GDDM)

CAPP 
DB

MQ

Web clients

FilesExt. 
tables

CAPP
(Dyalog APL)

UI 
(HTML5)

Bridge



Docker containersDFS

System overview – End goal

DB2

CAPP 
DB

MQ Web API client

Files

Ext. 
tables

CAPP
(Dyalog APL)

CAPP 
webapp client

(HTML5)

CAPP
(Dyalog APL)

CAPP
(Dyalog APL)

CAPP 
webapp client

(HTML5)

CAPP
(Dyalog APL)



Thanks for listening


