Onetime pure mathematician corrupted by exposure to APL loses moral compass and discovers, after several mis-steps, a useful numerical integration method

> Lesson from DNA Mixture Solution™ program development

Charles Brenner, Ph.D.

Purveyor of forensic mathematics, **DNA·VIEW®**, Senior Research Fellow at UC Berkeley Human Rights Center <u>http://dna-view.com</u> **+1 510 798 7139**

Dyalog 2022 Oct 10

Example functions to integrate

A little context about the DNA evidence application

Touch DNA evidence from a gun

x axis: DNA location or size in genome *y* axis: quantity (after lab processing)

DNA evidence overlaid with an example partial explanation

<u>Bar height =</u> assumed contribution proportions of 2 <u>color-coded people</u>'s DNA types. Measuring volume under an irregular canopy $C(x_1, x_2)$

(First idea. Quick and dirty)

Per seed *s* with area a_s , compute height $h_s = C$ of vertical pillar/prism. Volume $v_s = h_s \times a_s$.

 χ_2

Total volume (Riemann sum) $\int C \approx \Sigma v_s$.

Choose an initial handful of seeds (big red dots) at which to compute (time consuming!) heights $h_s = C(x_{1,s}, x_{2,s})$.

Fences around each seed define its area. ("Voronoi cell")

1000's of random black dots give a Monte Carlo estimate of cell areas a_s .

Area $a_1 = 4$

poort included

 χ_1

Measuring volume under an irregular canopy $C(x_1, x_2, ...)$

Adaptive step: Choose a pillar to split in two.

- For each cell *s* I'll estimate volume a 2^{n} time, using new points $(x'_{1,s}, x'_{2,s}, ...)$.
- I pick existing black (area measuring)
 points for the purpose.*
- Alternative heights $h'_{s} = C(x'_{1,s}, x'_{2,s}, ...)$ alternative volumes $v'_{s} = h'_{s} \times a_{s}$.

Cell with larger volume difference $\Delta_i = |v_s - v'_s|$ is better candidate for splitting into two cells. So split it.

Kelihood

 h_1

 ${\mathcal X}$

Pitfall with cell splitting: "I pick existing black (area measuring) dots for the purpose."*

- Eventually splitting dead ends when some small cells run out of black markers to split with.
- Adding a new black dot set costs much compute time to allocate to nearest Voronoi seeds.
- But there is no simple alternative.
- Voronoi boundaries (or areas) are difficult to compute.
- Visit expert in Switzerland?

Maybe fine. Bar splitting requires evaluating C(x), maybe expensive. Sometimes it's important to economize on splitting.

Numeric integration – area (or volume or hypervolume ...) under a curve (canopy ...)

A common situation – a small fraction of the domain accounts for most of the integral.

1D domain: 10% of x-axis is 1/10 of domain 2D domain: 10% of $x_1 \& x_2$ axes is 1/100 of domain. 3D domain: 10% of each domain axis is 1/1000 of domain.

Related: Volume of hypersphere inscribed in a unit hypercube goes rapidly to 0.

Adaptive integration

Adaptive integration – 2nd adaption

Seems like a workable method in 2 dimensions (i.e. 1 domain dimension).

How to translate it to multiple dimension domains?

Adaptive integration summay

- (Write \bar{x} for the point $(x_1, x_2, ..., x_n)$ in an *n*-dimensional domain.)
- In each cell, compute
 - $h_i \leftarrow C(\overline{x_i})$ at at least 2 values of \overline{x} ;
 - (hyper-)volumes $v_i \leftarrow h_i \times a$;
 - estimate of volume variation $\Delta v \leftarrow -/([/, [/)v_i)$.
- Split a cell with large (largest?) Δv .

Generalize to more dimensions

Alternative generalization – triangles etc.

Four dimensions – (domain \bar{x} of 3 dimensions): $\bar{x} = (x_1, x_2, x_3)$. Tile with **simplexes**

3D simplex

Ordinate $h = C(\bar{x})$

Pros and Comments

Hypercube cells

- + I know volume computation: $V \leftarrow \times / \bar{x}$
- + Obvious how to split
- # of cells = # of vertices
 - Compute one $C(\bar{x})$ per new cell
- + Published papers
- Directional bias
- Keeping track of split points

Simplex cells

- + Aha! Just linear algebra: $V \leftarrow \text{Det}(\bar{x})$ (Dfn by R Hui)
- + (see next slide)
- *Huge* computing leverage,
 e.g. 11+ cells per vertex
- Simplices to *maximize* is published. But *integrating* via simplices may be new.
- + No directional bias
- + Housekeeping splits is simple

Splitting a simplex

- *Simplex* definition:
 - A simplex in *n* dimensions
 - n + 1 points connected by
 - 2! *n* straight lines
 - 0-simplex
 - 1-simplex
 - 2-simplex
 - 3-simplex
 - ... *n*-simplex

Wrong way to split a cell

- Choose an interior point.
- Connect it to all 4 vertices.
- Cell is cut into 4 cells with a common (new) vertex
- !!? Original edges are *never* shortened!

Pros and Comments

Splitting simplex cells

- + Huge computing leverage, e.g.
 11 cells per new vertex (4D)
- + Extra cell splits are virtually free
- What would the 4D geometry look like?
 - 3D already permits unlimited # of cells to share an edge

Integration algorithm in brief

Cut point

min \downarrow

- Initialize
 - Tesselate domain with a handful of simplex cells.
 - For each cell *s* and vertex $\bar{x}_{s,i}$, calculate and save all the pillar volumes $v_{s,i} = a_s \times C(\bar{x}_{s,i})$. $\max \uparrow$
- Iterate

- For each cell *s*, find its *extreme edge* E_s - the edge that connects the vertices $v_{s,max}$ and $v_{s,min}$ of largest & smallest of the (already-computed) pillar volumes of *s*.

- Find the overall most extreme edge *E* among all cells.
- Cut within *E* at a cleverly chosen (how?) point. \checkmark
- Split *all* cells that include edge *E*.

10/17/2022

Summary & Epilogue

- Simplex tessellation requires 11×, 4×, or 2× fewer C(x̄) calculations per cell than does cubature for 4D, 3D, or 2-dimension domain.
- Mathematically satisfying stopping rule availed by computing every vertex, comparing high-side *vs* low-side integral estimation:
 - tolerance > $\Sigma_s(v_{s,max} v_{s,min})$
- Having decided on which edge to cut, cut where? Midway? (No!)
 - Presently: Calculate the height at some arbitrary intermediate point, then predict by quadratic interpolation with the 3 height including those of the edge ends.
 - Better idea brewing that needs a bit of housekeeping.

Example functions to integrate

Likelihood of observed mixture Case 0278 E+??=U 3pMix

Likelihood of observed mixture Case 0278 D+E+??=U 3pMix 33.0% 35.0% st 32.0%

E

How to generalize cell shape with larger # of dimensions

TypeTypeTypeTypesize 16size 18size 24size 16

Type size 24

Riemann integration low-side \int estimate.

Riemann integration (-side height)

Old & New mixture models

- Now: Two dimensions
 - \rightarrow Allele sizes
 - ↑ Peak heights continuous

Stochastic variation model

1000 rfu expected

10/17/2022

Mixture likelihood without unknowns

Example hypothesis:

Mixture is G+C, proportion 5:4

Mixture likelihood with unknowns

10/17/2022

High-side Riemann estimate

Refinement strategies:

- Split a bar
- Not all bars costly!
- Split where big ∆ area

10/17/2022

What's the area?

Riemann sum integration