Introducing the Mystika Project

Erik Wallace
University of Connecticut

Some History

The 20™ of May 2013

Edward Snowden reveals
the existence of PRISM,
Bullrun and other aspects
of the NSA’s surveillance
program.

The 5™ of September 2013

A “backdoor” is discovered in
the Dual Elliptic Curve
Deterministic Random
Number Algorithm.

The 7™ of April 2014

The Heartbleed Bug

The Heartbleed Bug is a serious vulnerability in the popular OpenSSL
cryptographic software library. This weakness allows stealing the
information protected, under normal conditions, by the SSL/TLS
encryption used to secure the Internet. SSL/TLS provides
communication security and privacy over the Internet for applications
such as web, email, instant messaging (IM) and some virtual private
networks (VPNs).

The Heartbleed bug allows anyone on the Internet to read the memory
of the systems protected by the vulnerable versions of the OpenSSL
software. This compromises the secret keys used to identify the service
providers and to encrypt the traffic, the names and passwords of the
users and the actual content. This allows attackers to eavesdrop on
communications, steal data directly from the services and users and to

impersonate services and users.

The 1° of July 2014

Mystika is born!

29" of September 2014

| leave Indiana for Jerusalem.

The Mystika project stalls!

16" of September 2016

About a dozen of my students at UConn express
Interest in Mystika.

The project resumes!

Overview of Mystika

Goals

 Adrop-in replacement to Open SSL
» Afull fledged big number library for APL
* Potential off-shoots?

Why APL?

e To test Aaron’s compiler

...no seriously:
 Memory leaks like Heartbleed are not likely.
* Concise code: easier to audit*

*For someone who knows APL

Design Principles

All algorithms critical to Cryptography must be “uniform time.”
All algorithms must be parallel to the greatest extent possible.
Only cutting edge crypto algorithms are used.

Only the fastest algorithms are used.

Each Dyalog APL primitive should have a big number analog.

Uniformity in time (example 1)

Binary exponentiation

33281
5

Calculate
33281=32768+512+1=2"+224+2°

I.e. the binary expansion of the exponent is
1000001000000001

By repeated squaring we can raise 5 to any power of 2.
The highest power is 15, so it takes 15 steps to compute

533821 and 5512

Then it takes two additional steps of multiplication (for a total of 17 steps)

533281 — 532768 < 5512 < 51

But for a random 16 bit exponent it would take 22.5 steps.
The maximum number of steps is 30.

Uniformity in time (example 2)

The Euclidean Algorithm

Gcd(112,71) takes 8 steps to compute:

11

112

1 0 1 1 2 5 7 19 27 71

Gcd(119,80) takes only 4 steps to compute

119
1 0 1 2 39 80

The Anatomy of a bighum

Aninteger: 16 0 0, (8p16)T3483374771
16 0 0 12 15 10 0 1 4 11 3

A negative integer: 16 0 1, (8p16)T 3483374771
16 ©1 30 5 15 14 11 4 13

A decimal: 10 3 0, (10p10)T3483374771
10303483374771

A complex number: 0J16 0 0, (8p0J16)T34833J74771
0J16 © ®© 0 0 0@ 0J1 2J8 8J 5 15J 1 1J3

A vector of bignums

1671 1 3 151 0 1 05(8p16)T 3706 444 2381 2366

16 16 16 16
1 1 3
1 0 1

15 15

15 15

15 15

15 15

15 15
1 6
8 11 11
6 12

P OOOOOo
P UWOOOOOOOHR

w
[

Full vs. Partial Carrying

Consider what happens when adding 1t0 9 99...9 9 in base 10.
(10 0 0,20p9) add 10 0 0, 2011
10 101 00000000000000000O00
65546=10+2'° specifies partial carrying:
(65546 0 0,20p9) add 65546 0 0, 2011

65546 0 0 9 9 9 9999999999999 10000

Supported primitive operators

red / rdf # scn \ scf X
dot . out .o pop * rop o

ima
mul
Rot
eql
gth
abs /mod
rol

Supported primitive functions

N— V Il & X 1

=
©)

rea
cat
rof
neq
1th
rho
tke /mix

- 0O AN N O~

cnj/add
rav
pic
leq
flo/min
eps
drp/spl

=+

— M r—IN U=

sub
trn
sqd
geq
cel /max
ind
div

= — |V O

Exceptions to the dictionary

» AXis specification must be shifted by 1 unit:
e.g. [.5]becomes [.5]

 Small nums must be turned into bignums
e.g. 2cadd does not work for 20+

Other functions/operators

sha (dyadic): Sha-2
mex (operator): Modular Exponentiation
bch: Base Change

Limitations

AXis specification is not supported
The radix has a range of -232 to 232

FFT multiplication maxes out at a number of places dependent
on the base

Partial carrying for complex numbers needs fine tuning

Our License

AGPL v3

Student Contributors

John Bochicchio
Andre Cal

Thomas Crosby
Mason Dicicco

Kurtis Duggan

Emily Maciejewski
Victoria Reichelderfer
Anthony Shaw

Thank you!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25

