) >Real Logic

ACCELERATING SOFTWARE

Rectangles All The Way Down

Martin Thompson - @mijpt777

“The most amazing achievement of the
computer software industry is its
continuing cancellation of the steady
and staggering gains made by the
compuvuter hardware indusiry.”

- Henry Peteroski

Fundamental Laws

CPU Performance - Memory Lane

© “Transistor density doubles every year”
- Gordon Moore
—

o
o
A

CPU Performance - Memory Lane

@ “Transistor density doubles every 2 years”
- Gordon Moore

© “Transistor density doubles every year”
- Gordon Moore
—

) *)
©
N &

CPU Performance - Memory Lane

©® “CPUs double in speed every 18 months”
- David House

@ “Transistor density doubles every 2 years”
- Gordon Moore

© “Transistor density doubles every year”
- Gordon Moore

—
2 %

‘o

2 3

CPU Performance - Memory Lane

“The free lunch is over:” €
- Herb Sutter

©® “CPUs double in speed every 18 months”
- David House

@ “Transistor density doubles every 2 years”
- Gordon Moore

© “Transistor density doubles every year”

- Gordon Moore
—
NG

A2 \>
%
Ny \q'\ 0N

CPU Performance - Memory Lane

Retirement of Tick Tock €
- Intel

“The free lunch is over:” €
- Herb Sutter

©® “CPUs double in speed every 18 months”
- David House

@ “Transistor density doubles every 2 years”
- Gordon Moore

© “Transistor density doubles every year”
- Gordon Moore

—

) *)
‘o
A S

CPU Performance - Memory Lane

Specire & Meltdown @
- Google

Retirement of Tick Tock €

- Intel

“The free lunch is over:” €
- Herb Sutter

©® “CPUs double in speed every 18 months”
- David House

@ “Transistor density doubles every 2 years”
- Gordon Moore

© “Transistor density doubles every year”
- Gordon Moore

—
o %
‘o
9 3

Concurrency & Parallelism

p— - "".fs' ¢ ¥ O 1
’V 2 b R 5 | b
L abdd 'ﬁ"-h“ .1‘\ { |\ ‘_l . C e

e ~»

Universal Scalability Law (USL)

C(N) =N/ (1 +a(N-1) + ((B* N) * (N - 1)))

C = capacity or throughput
N = numlber of processors
a = contention penalty
B = coherence penalty

Universal Scalability Law (USL)

Speedup

O N A~ O

20
18
16
14
1
1

o N

16 32 64
Processors
=sAmdahl ===USL

128 256 512

1024

If concurrency is so difficult then
what else can we do?

Queueing Theory

12.0

10.0

o
@

Response Time
(0,8
@)

I~
@

N
o

o

@
O
o

0.1 02 03

04 0.5 0.6
Utilisation

0.7

0.8

0.9

1.0

Queueing Theory

r=s(2 -9p) / 2(1 - p)
r = medan response time
s = service time

o = utilisation

Note: p = A * s

Little’s Law

L = AW
WIP = Throughput * Cycle Time

Little’s Law

L = AW

WIP = Throughput * Cycle Time

Bandwidth Delay Product:
Bytes in flight = Bandwidth * Latency

Little’s Law

L = AW

WIP = Throughput * Cycle Time

Bandwidth Delay Product:
Bytes in flight = Bandwidth * Latency

80 bytes / 100ns = 800 MB/s :10 LFBs

Memory

Are all memory
operations equal?

Sequential Access

Average fime in ns/op to sum all
longs in a 1GB array?

Access Pailtern Benchmark

Benchmark Score Error Units

sequential 0.832 * 0.006 ns/op

~1 ns/op

Really???
Less than 1ns per operation?

Instruction Level Parallelism

Haswell Execution Unit Overview

Unified Reservation Station

Doubles peak FLOPs
Two FP multiplies
benefits legacy

4th ALU
Great for integer workloads
« Frees Port0 & 1 for vector

New Branch Unit New AGU for Stores

Reduces Port0 Conflicts « Leaves Port 2 & 3
2nd EU for high branch code open for Loads

Access Pailtern Benchmark

Benchmark Score Error Units
sequential 0.832 * 0.006 ns/op
randomPage 2.703 * 0.025 ns/op

Access Pailtern Benchmark

Benchmark Score Error Units
sequential 0.832 * 0.006 ns/op
randomPage 2.703 * 0.025 ns/op
dependentRandomPage 7.102 * 0.326 ns/op

Access Pailtern Benchmark

Benchmark Score Error Units
sequential 0.832 * 0.006 ns/op
randomPage 2.703 * 0.025 ns/op
dependentRandomPage 7.102 * 0.326 ns/op
randomHeap 19.896 + 3.110 ns/op

Access Pailtern Benchmark

Benchmark Score Error Units
sequential 0.832 * 0.006 ns/op
randomPage 2.703 * 0.025 ns/op
dependentRandomPage 7.102 * 0.326 ns/op
randomHeap 19.896 + 3.110 ns/op
dependentRandomHeap 89.516 * 4.573 ns/op

Access Pailtern Benchmark

Benchmark Score Error Units
sequential 0.832 * 0.006 ns/op
randomPage 2.703 * 0.025 ns/op
dependentRandomPage 7.102 * 0.326 ns/op
randomHeap 19.896 + 3.110 ns/op
dependentRandomHeap 89.516 * 4.573 ns/op

~90 ns/op

T

AUHUE: UUUANEY]
AT TN
T T
FIRHNERE FEREEEEN)

1l

e

g O e e A VLA LI AT

A 100ns cache-miss is a
lost opportunity to execute
~1000 instructions on CPU

Algorithms &
Data Structures

Little’s Law

L = AW

Bandwidth Delay Product:
Bytes i1n flight = Bandwidth * Latency

80 bytes / 100ns = 800 MB/s :10 LFBs

Little’s Law

L = AW

Bandwidth Delay Product:
Bytes i1n flight = Bandwidth * Latency

80 bytes / 100ns = 800 MB/s :10 LFBs
80 bytes / 15ns = 5.3 GB/s :prefectch

Little’s Law

L = AW

Bandwidth Delay Product:
Bytes i1n flight = Bandwidth * Latency

80 bytes / 100ns = 800 MB/s :10 LFBs
80 bytes / 15ns = 5.3 GB/s :prefectch
640 bytes / 15ns = 42.6 GB/s :cachelines

Arrays are the most efficient
data structure to fraverse

Functional data structures
are like sausages,
the more you see them being
made, the less well you will sleep

Branches

Haswell Execution Unit Overview

Unified Reservation Station

Doubles peak FLOPs
Two FP multiplies
benefits legacy

4th ALU
Great for integer workloads
« Frees Port0 & 1 for vector

New Branch Unit New AGU for Stores

Reduces Port0 Conflicts « Leaves Port 2 & 3
2nd EU for high branch code open for Loads

Branch Benchmark

Benchmark Score Error Units

baseline 585.600 & 4.469 us/op

Branch Benchmark

Benchmark Score Error Units
baseline 585.600 & 4.469 us/op
predictable 578.364 + 10.906 wus/op

Branch Benchmark

Benchmark Score Error Units
baseline 585.600 & 4.469 us/op
predictable 578.364 + 10.906 wus/op
unPredictable 2234 .414 £ 564.472 us/op

What can we do?

Count bits as Booleans

Wide Registers

Math, Data Dependencies, and
Instruction Level Parallelism

Haswell Execution Unit Overview

Unified Reservation Station

Doubles peak FLOPs
Two FP multiplies
benefits legacy

4th ALU
Great for integer workloads
« Frees Port0 & 1 for vector

New Branch Unit New AGU for Stores

Reduces Port0 Conflicts « Leaves Port 2 & 3
2nd EU for high branch code open for Loads

Consider Sorting Arrays

https://lamport.azurewebsites.net/pubs/multiple-byte.pdf

Programming G. Manacher
Techniques Editor

Multiple Byte
Processing with Full-
Word Instructions

Leslie Lamport .
Massachusetts Computer Associates, Inc.

A method is described which allows parallel proc-
essing of packed data items using only ordinary full-
word computer instructions, even though the processing
requires operations whose execution is contingent upon
the value of a datum. It provides a useful technique for
processing small data items such as alphanumeric
characters.

Key Words and Phrases: byte processing, character
processing, packed data

CR Categories: 4.9

Communications August 1975
of Volume 18
the ACM Number 8

“It's a neat hack, and it’'s more useful
now than it was then for two reasons.”

- Leslie Lamport (2011)

“The obvious reason is that word size is
larger now, with many computers
having é4-bit words.”

- Leslie Lamport (2011)

“The less obvious reason is that
conditional operations are implemented
with masking rather than branching.”

- Leslie Lamport (2011)

“Branching is more costly on modern
multi-issue computers than it was on the
computers of the 70s.”

- Leslie Lamport (2011)

https://www.inf.ed.ac.uk/teaching/courses/exc/reading/morris.pdf

Programming S.L. Graham, R.L. Rivest
Techniques Editors

Counting Large
Numbers of Events in
Small Registers

Robert Morris
Bell Laboratories, Murray Hill, N.J.

It is possible to use a small counter to keep
approximate counts of large numbers. The resulting
expected error can be rather precisely controlled. An
example is given in which 8-bit counters (bytes) are
used to keep track of as many as 130,000 events with a
relative error which is substantially independent of the
number n of events. This relative error can be expected
to be 24 percent or less 95 percent of the time (i.e. o0 =
n/8). The techniques could be used to advantage in
multichannel counting hardware or software used for
the monitoring of experiments or processes.

Key Words and Phrases: counting

CR Categories: 5.11

Communications October 1978
of Volume 21

the ACM Number 10

Work with your CPU caches

Memory Access Considerations

1. Temporal: group accesses in time

Memory Access Considerations

1. Temporal: group accesses in time

2. Spatial: group access in space

Memory Access Considerations

1. Temporal: group accesses in time
2. Spatial: group access in space

3. Pattern: create predictable patterns

Batching

Batching — Amortising Costs
100% E

90% - Average overhead
807% - per item, or operation,
70% - in a batch

60% -
50% -
40% -
30% -
20% -
10% -
0% -

Batching — Amortising Costs

100% -
90% -
80% -

70% - Words, Cachelines,

60% - Pages, Blocks,
50% - Frames, eflc.

40% -
30% -
20% -
10% -
0% -

In closing...

Profile, profile, profile...

Eliminate Waste
Batch to Amortise
Access Memory in Patterns
Favour Math over Branches
Favour Predictable Branches

Consider Parallelism

ILP & Task

Is it really “Turtles all the way down”?

Rectangles all the way down...

Is it really “Turtles all the way down”?

Networks: Frames

Operating Systems: Pages

File systems and storage: Blocks

- DRAM memory: Banks and Row Buffers /(’7%771;?%%%6“\\\
7 01
» CPU cache subsystems; Cache Lines 077011 i\

- Applications use Arrays plus and interesting
data structures are made up of small Arrays

“I don’t care what data structure you
use, nothing beats an array”

- a HFT Programmer

Questions?
Twitter: @mjpt777

“Travel is fatal to prejudice, bigotry, and
narrow-mindedness, and many of our
people need it sorely on these accounts.
Broad, wholesome, charitable views of
men and things cannot be acquired by
vegetating in one little corner of the earth
all one’s lifetime.”

- Mark Twain

