
1

Performance:
The Neverending Story

Jay Foad

2

Agenda
Version 15.0
Version 16.0
… and beyond!

Performance: The Neverending Story

3

Version 15.0

Performance: The Neverending Story

4

Version 15.0
PQA graphs look better than ever

(best increase we have ever measured)
Due to a combination of:

• C compiler upgrades
• Lots of individual optimisations

Also occasional new performance features
• E.g. 8⌶ (Inverted table index of) in version 14.1

Performance: The Neverending Story

5

Version 15.0 Hashed arrays
I-beam to mark an array as a

potential and likely left argument to dyadic ⍳
(and the other set functions)
Better than the old A∘⍳ system
Hash table is updated by:

• Append idiom ,←
• Chop idiom ↓⍨←

Performance: The Neverending Story

6

Version 15.0 Hashed arrays
Old way:
 f ← A∘⍳
 f x ⋄ f y ⋄ f z
New way:
 B ← 1500⌶ A
 B⍳x ⋄ y∊B ⋄ ∪B
 B ,← ⍳10 ⋄ B ↓⍨← ¯5

Performance: The Neverending Story

7

Version 15.0 Chop idiom
Fastest way of trimming a vector
Works in place (like the append idiom)
Also works on leading axis of any array

 vec ↓⍨← ¯2 ⍝ chop last 2 items
 mat ↓⍨← ¯3 ⍝ chop last 3 rows

Performance: The Neverending Story

8

Version 16.0
Random bits
Namespace refs
Selective assignment
Boolean algorithms
DECF representation

Performance: The Neverending Story

9

Version 16.0 Random bits
Previously:

 ⎕IO←0
 cmpx'?1E6⍴2'
 ?1E6⍴2 → 4.5E¯3 | 0% ⎕⎕

New default and optimisations in version 16.0:

 ⎕RL←⍬
 cmpx'?1E6⍴2' '1E6(?⍴)2'
 ?1E6⍴2 → 2.1E¯4 | 0% ⎕⎕
* 1E6(?⍴)2 → 7.0E¯5 | -68% ⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕

Performance: The Neverending Story

10

Version 16.0 Namespace refs

Performance: The Neverending Story

Parse dots
43%

Switch ns
39%

Call empty tradfn
100%

Parse dots
12%

Switch ns
27%

Calling a function in a namespace
 ns.foo 99
has an 82% penalty

Penalty reduced to 39%

11

Version 16.0 Selective assignment
Selective assignment is not an efficient way to modify a few items in a
large array A:

 (2↑A)←99
 ((⊂2 4)⌷A)←99

... because we generate an index array for the whole of A.
(Factor of 2 when A has 1000 items.
 Factor of 1000 when A has 1E6 items.)

This has been fixed for Squad ⌷ indexing
We hope to fix it for Take/Drop ↑↓ and Compress Bool/
Maybe others, as time permits

Performance: The Neverending Story

12

Version 16.0 Boolean algorithms
Coming next…

(U08) A Compendium of SIMD Boolean Array
Algorithms in APL
Robert Bernecky (Snake Island Research)

Word-at-a-time algorithms for =\ and ≠\

 {⍵/⍨q∨≠\q←⍵='"'} 'Bob "SIMD" Bernecky'
"SIMD"

Performance: The Neverending Story

13

Version 16.0 DECF representation
128-bit Decimal floating point
Current representation is DPD:

good for formatting
Alternative is BID:

good for calculations (2x faster)
Or we could do 128-bit Binary floating point
(another 2x faster for calculations)

Performance: The Neverending Story

14

The future

Performance: The Neverending Story

15

The future
No shortage of work for Roger
Squeeze more out of the C compilers
More use of modern SIMD instructions

(AVX2, POWER8)
More to be done on namespace refs

and similar targetted speed-ups

Performance: The Neverending Story

	Performance:�The Neverending Story
	Agenda
	Version 15.0
	Version 15.0
	Version 15.0 Hashed arrays
	Version 15.0 Hashed arrays
	Version 15.0 Chop idiom
	Version 16.0
	Version 16.0 Random bits
	Version 16.0 Namespace refs
	Version 16.0 Selective assignment
	Version 16.0 Boolean algorithms
	Version 16.0 DECF representation
	The future
	The future

