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Agenda 
Version 15.0 
Version 16.0 
… and beyond! 
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Version 15.0 
PQA graphs look better than ever 

(best increase we have ever measured) 
Due to a combination of: 

• C compiler upgrades 
• Lots of individual optimisations 

Also occasional new performance features 
• E.g. 8⌶ (Inverted table index of) in version 14.1 
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Version 15.0 Hashed arrays 
I-beam to mark an array as a 

potential and likely left argument to dyadic ⍳ 
(and the other set functions) 
Better than the old A∘⍳ system 
Hash table is updated by: 

• Append idiom  ,← 
• Chop idiom  ↓⍨← 
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Version 15.0 Hashed arrays 
Old way: 
      f ← A∘⍳ 
      f x ⋄ f y ⋄ f z 
New way: 
      B ← 1500⌶ A 
      B⍳x ⋄ y∊B ⋄ ∪B 
      B ,← ⍳10 ⋄ B ↓⍨← ¯5 
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Version 15.0 Chop idiom 
Fastest way of trimming a vector 
Works in place (like the append idiom) 
Also works on leading axis of any array 
 
  vec ↓⍨← ¯2  ⍝ chop last 2 items 
  mat ↓⍨← ¯3  ⍝ chop last 3 rows  
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Version 16.0 
Random bits 
Namespace refs 
Selective assignment 
Boolean algorithms 
DECF representation 

Performance: The Neverending Story 



9 

Version 16.0 Random bits 
Previously: 
 
      ⎕IO←0 
      cmpx'?1E6⍴2' 
  ?1E6⍴2   → 4.5E¯3 |  0% ⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕ 
 

New default and optimisations in version 16.0: 
 
      ⎕RL←⍬ 
      cmpx'?1E6⍴2' '1E6(?⍴)2'                                  
  ?1E6⍴2   → 2.1E¯4 |   0% ⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕ 
* 1E6(?⍴)2 → 7.0E¯5 | -68% ⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕ 
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Version 16.0 Namespace refs 

Performance: The Neverending Story 

Parse dots 
43% 

Switch ns 
39% 

Call empty tradfn 
100% 

Parse dots 
12% 

Switch ns 
27% 

Calling a function in a namespace 
    ns.foo 99 
has an 82% penalty 

Penalty reduced to 39% 



11 

Version 16.0 Selective assignment  
Selective assignment is not an efficient way to modify a few items in a 
large array A: 
 
           (2↑A)←99 
      ((⊂2 4)⌷A)←99 
 
... because we generate an index array for the whole of A. 
(Factor of 2 when A has 1000 items. 
 Factor of 1000 when A has 1E6 items.) 
 
This has been fixed for Squad ⌷ indexing 
We hope to fix it for Take/Drop ↑↓ and Compress Bool/ 
Maybe others, as time permits 
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Version 16.0 Boolean algorithms 
Coming next… 

(U08) A Compendium of SIMD Boolean Array 
Algorithms in APL 
Robert Bernecky (Snake Island Research) 

 
Word-at-a-time algorithms for =\ and ≠\ 
 
      {⍵/⍨q∨≠\q←⍵='"'} 'Bob "SIMD" Bernecky' 
"SIMD" 
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Version 16.0 DECF representation  
128-bit Decimal floating point 
Current representation is DPD: 

good for formatting 
Alternative is BID: 

good for calculations (2x faster) 
Or we could do 128-bit Binary floating point 
(another 2x faster for calculations) 
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The future 
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The future 
No shortage of work for Roger 
Squeeze more out of the C compilers 
More use of modern SIMD instructions 

(AVX2, POWER8) 
More to be done on namespace refs 

and similar targetted speed-ups 
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