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Abstract

Optimizing Functional Array Language (FAL) compilers for
languages such as APL (APEX) and SAC (sac2c), now produce
code that outperforms hand-optimized C in both serial and parallel
arenas, while retaining the abstract expressionist nature of
well-written FAL code.
In this talk, we demonstrate how FAL can now outperform C, in
both serial and OpenMP variants, by up to a third, with no source
code modifications. We also show that modern optimizers can
sometimes generate identical loops from substantially different FAL
source code.
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Talk Layout

▶ Serial performance: physics relaxation benchmark
▶ Parallel performance: physics relaxation benchmark
▶ Wild applause
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A Physics Benchmark: Vector Relaxation

▶ Inputs: temperatures (fixed) at each end of N-element rod
▶ Output: End element temperatures remain unchanged;

Other element temps are arithmetic mean of neighbors
▶ Application: image processing, e.g., dust removal (2D)
▶ Application: temperature distribution in a rod

Dyalog APL/S-64 Version 14.1.25324
8-core AMD FX-8350 (Piledriver) @ 4013MHz, 32GB DRAM
Ubuntu 14.04LTS, sac2c Build #18605, gcc 4.8.2-19ubuntu1
100000 iterations of relaxation kernel
100001-element vector argument, N
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Abstract Expressionism in Dyalog APL

Three Ways to do Vector Relaxation in Dyalog APL

▶ Abstract: No tinkering of “memory"
▶ Expressions: No need for variables (convenience only)
▶ TDû{(1Ù×),(((2Õ×)+¢2Õ×)ß2.0),¢1Ù×}
▶ ROTû{NûÒ×
     mû(0=ÉN)©(N-1)=ÉN
     (m«×)+(~m)«((1÷×)+¢1÷×)ß2.0}

▶ SHFû{NûÒ×
     mû(0=ÉN)©(N-1)=ÉN
     (m«×)+(~m)«((1 shift ×)+¢1 shift ×)ß2}
     shiftû{((«Á)«Ò×)ÙÁÕ×}

Robert Bernecky, Sven-Bodo Scholz Abstract Expressionism for Parallel Performance



Serial Relaxation Timings in Dyalog APL

TDû{(1Ù×),(((2Õ×)+¢2Õ×)ß2.0),¢1Ù×}
ROTû{NûÒ×
     mû(0=ÉN)©(N-1)=ÉN
     (m«×)+(~m)«((1÷×)+¢1÷×)ß2.0}
SHFû{NûÒ×
     mû(0=ÉN)©(N-1)=ÉN
     (m«×)+(~m)«((1 shift ×)+¢1 shift ×)ß2}
     shiftû{((«Á)«Ò×)ÙÁÕ×}

▶ Timings:
APL TD 82.6s
APL ROT 203.9s
APL SHF 236.9s
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Serial Relaxation in C Using IF/THEN/ELSE

for( j=0; j<N; j++) {

if(0==j) {

res[j] = v[j];

} else if((N-1)==j) {

res[j] = v[j];

} else {

res[j] = (v[j-1] + v[j+1])/2.0;

}

}

▶ Timings:
APL TD 82.6s
APL ROT 203.9s
APL SHF 236.9s
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Serial Relaxation in C Using IF/THEN/ELSE

for( j=0; j<N; j++) {

if(0==j) {

res[j] = v[j];

} else if((N-1)==j) {

res[j] = v[j];

} else {

res[j] = (v[j-1] + v[j+1])/2.0;

}

}

▶ Timings:

APL TD 82.6s
APL ROT 203.9s
APL SHF 236.9s
C IF/THEN/ELSE 16.3s

Robert Bernecky, Sven-Bodo Scholz Abstract Expressionism for Parallel Performance



Serial Relaxation in C Using Conditional Expressions

for( j=0; j<N; j++) {

res[j] = (0==j) ? v[j] :

((N-1)==j) ? v[j] :

(v[j-1] + v[j+1])/2.0;

}

▶ Timings:

APL TD 82.6s
APL ROT 203.9s
APL SHF 236.9s
C IF/THEN/ELSE 16.3s
C COND 16.4s
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Serial Relaxation in SAC Using Conditional Expressions

res = with {

([0] <= [j] < [N]) :

(0==j) ? v[j] :

((N-1)==j) ? v[j] :

(v[j-1] + v[j+1])/2.0;

} : modarray( v);

▶ Timings:

APL TD 82.6s
APL ROT 203.9s
APL SHF 236.9s
C IF/THEN/ELSE 16.3s
C COND 16.4s
SAC COND 12.0s
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Serial Relaxation in SAC, Hand-Optimized

Can SAC do better?
Three data-parallel With-Loop partitions:

res = with {

([0] <= [j] < [1]) : v[j];

([1] <= [j] < [N-1]) :

(v[j-1] + v[j+1])/2.0;

([N-1] <= [j] < [N]) : v[j];

} : modarray( v);

▶ Timings:

APL TD 82.6s
APL ROT 203.9s
APL SHF 236.9s
C IF/THEN/ELSE 16.3
C COND 16.4
SAC COND 12.0s
SAC HAND 5.9s
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Serial Relaxation using Abstract Expressionism and APEX

▶ Take and drop algorithm in APEX
▶ TDû{(1Ù×),(((2Õ×)+¢2Õ×)ß2.0),¢1Ù×}
▶ Approximate APEX-generated SAC code

mid = (drop([2],v)+drop([-2],v))/2.0;

res = take([1],v)++mid++take([-1],v);

▶ Timings:
APL TD 82.6s
SAC HAND 5.9s
APEX TD 5.9s

▶ Identical inner loops for APEX TD and SAC HAND
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Serial Relaxation using Abstract Expressionism and APEX

ROTû{NûÒ×
     mû(0=ÉN)©(N-1)=ÉN
     (m«×)+(~m)«((1÷×)+¢1÷×)ß2.0}

m = (0 == iota(N)) | ((N-1) == iota(N));

res = (tod(m) * v) + tod(!m) *

((rotate([1], v) + rotate([-1], v)))/2.0;

▶ Rotate algorithm in APEX, generated SAC code

▶ Timings:
APL ROT 82.6s
SAC HAND 5.9s
APEX ROT 5.9s

▶ Identical inner loops for APEX ROT and SAC HAND
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Serial Relaxation using Abstract Expressionism and APEX

SHFû{NûÒ×
     mû(0=ÉN)©(N-1)=ÉN
     (m«×)+(~m)«((1 shift ×)+¢1 shift ×)ß2}
     shiftû{((«Á)«Ò×)ÙÁÕ×}

m = (0 == iota(N)) | ((N-1) == iota(N));

res = (tod(m) * v) + tod(!m) *

((shift([1],v) + shift([-1],v)))/2.0;

▶ Shift algorithm in APEX-generated SAC code

▶ Timings:

APL TD 82.6s
APL ROT 203.9s
APL SHF 236.9s
SAC HAND 5.9s
APEX TD 5.9s
APEX ROT 5.9s
APEX SHIFT 5.9s

▶ ALL inner loops are identical!
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Why are Identical Inner Loops Noteworthy?

▶ APL source codes differ substantially
▶ Very different SAC stdlib code for rotate, shift, take/drop
▶ E.g., number of With-Loops, setup code style
▶ See paper for stdlib code, here:

http://www.snakeisland.com/abstractexpressionism.pdf
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Serial Performance GFLOPS

▶ Hard to do better? SAC/APEX approach maximum GFLOPS
rate

▶ Let’s look at parallel execution
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Parallel Relaxation Speedup in C

▶ Open MP
▶ Basic idea: Introduce ceremonial rubbish into SOURCE code
▶ See paper for ceremonial details
▶ Basic idea: Introduce pragmas into SOURCE code

#pragma omp parallel for

after SOME for statements.
▶ Compile with -fopenmp
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Parallel Relaxation Speedup in C Performance

▶ Timings: (higher is better)

▶
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Optimized Parallel Relaxation in C

for( j=0; j<N; j++) {

if(0==j) {

res[j] = v[j];

} else if((N-1)==j) {

res[j] = v[j];

} else {

res[j] = (v[j-1] + v[j+1])/2.0;

}

}

▶ Bright idea: Replace multiple "res[j] =" by "el ="
▶ Bright idea: and add "res[j] = el;" after IF-statement
▶ Rationale: Eliminate multiple indexed assigns into "res"
▶ This should improve instruction cache use
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Pessimized Parallel Relaxation in C

▶ Timings: (higher is better)

▶
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Parallel Relaxation Slowdown in C Post-mortem

for( j=0; j<N; j++) {

if(0==j) {

el = v[j];

} else if((N-1)==j) {

el = v[j];

} else {

el = (v[j-1] + v[j+1])/2.0;

}

res[j] = el;

}

▶ What went wrong?
▶ el is shared, so it hops among all threads
▶ Bottom line: Bright idea not so bright (watch system monitor!)
▶ Bottom line: Writing parallel C code is NOT trivial
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Serial and Parallel Relaxation Performance

▶ Abstract expressionist APL matches best SAC code
▶ SAC and APL beat C by 2.75X in serial environment
▶ SAC and APL beat Open MP C by 1/3 in parallel environment
▶ NO changes to APL code for parallel execution, unlike C
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Serial and Parallel Relaxation Performance

Higher is better
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SAC Keys to High-Performance FAL Compilation

▶ Provide purely functional Intermediate Language (IL)
▶ Preserve array semantics in IL
▶ Scalarize small arrays, e.g.:
▶ in Gaussian Elimination pivot, replacing:
mat[rowa,rowb;]ûmat[rowb,rowa;]

by
trowûmat[rowa;] þ mat[rowa;]ûmat[rowb;] þ
mat[rowb;]ûtrow

▶ . . . gives 2X speedup!
▶ Do scalarization in the compiler, NOT in app source code.
▶ Use array-based optimizations, e.g., with-loop folding (WLF)
▶ and others. . .
▶ Stay tuned for the book!
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The late Ken Iverson, an Albertan farm boy, had many excellent
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Thank you! Questions?
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