
Abstract Expressionism for Parallel Performance

Robert Bernecky1 Sven-Bodo Scholz2

1Snake Island Research Inc, Canada
bernecky@snakeisland.com

2Heriot-Watt University, UK
S.Scholz@hw.ac.uk

This paper was presented at PLDI 2015, Portland, OR.

August 31, 2015

Robert Bernecky, Sven-Bodo Scholz Abstract Expressionism for Parallel Performance

Abstract

Optimizing Functional Array Language (FAL) compilers for
languages such as APL (APEX) and SAC (sac2c), now produce
code that outperforms hand-optimized C in both serial and parallel
arenas, while retaining the abstract expressionist nature of
well-written FAL code.
In this talk, we demonstrate how FAL can now outperform C, in
both serial and OpenMP variants, by up to a third, with no source
code modifications. We also show that modern optimizers can
sometimes generate identical loops from substantially different FAL
source code.

Robert Bernecky, Sven-Bodo Scholz Abstract Expressionism for Parallel Performance

Talk Layout

▶ Serial performance: physics relaxation benchmark
▶ Parallel performance: physics relaxation benchmark
▶ Wild applause

Robert Bernecky, Sven-Bodo Scholz Abstract Expressionism for Parallel Performance

A Physics Benchmark: Vector Relaxation

▶ Inputs: temperatures (fixed) at each end of N-element rod
▶ Output: End element temperatures remain unchanged;

Other element temps are arithmetic mean of neighbors
▶ Application: image processing, e.g., dust removal (2D)
▶ Application: temperature distribution in a rod

Dyalog APL/S-64 Version 14.1.25324
8-core AMD FX-8350 (Piledriver) @ 4013MHz, 32GB DRAM
Ubuntu 14.04LTS, sac2c Build #18605, gcc 4.8.2-19ubuntu1
100000 iterations of relaxation kernel
100001-element vector argument, N

Robert Bernecky, Sven-Bodo Scholz Abstract Expressionism for Parallel Performance

Abstract Expressionism in Dyalog APL

Three Ways to do Vector Relaxation in Dyalog APL

▶ Abstract: No tinkering of “memory"
▶ Expressions: No need for variables (convenience only)
▶ TDû{(1Ù×),(((2Õ×)+¢2Õ×)ß2.0),¢1Ù×}
▶ ROTû{NûÒ×
 mû(0=ÉN)©(N-1)=ÉN
 (m«×)+(~m)«((1÷×)+¢1÷×)ß2.0}

▶ SHFû{NûÒ×
 mû(0=ÉN)©(N-1)=ÉN
 (m«×)+(~m)«((1 shift ×)+¢1 shift ×)ß2}
 shiftû{((«Á)«Ò×)ÙÁÕ×}

Robert Bernecky, Sven-Bodo Scholz Abstract Expressionism for Parallel Performance

Serial Relaxation Timings in Dyalog APL

TDû{(1Ù×),(((2Õ×)+¢2Õ×)ß2.0),¢1Ù×}
ROTû{NûÒ×
 mû(0=ÉN)©(N-1)=ÉN
 (m«×)+(~m)«((1÷×)+¢1÷×)ß2.0}
SHFû{NûÒ×
 mû(0=ÉN)©(N-1)=ÉN
 (m«×)+(~m)«((1 shift ×)+¢1 shift ×)ß2}
 shiftû{((«Á)«Ò×)ÙÁÕ×}

▶ Timings:
APL TD 82.6s
APL ROT 203.9s
APL SHF 236.9s

Robert Bernecky, Sven-Bodo Scholz Abstract Expressionism for Parallel Performance

Serial Relaxation in C Using IF/THEN/ELSE

for(j=0; j<N; j++) {

if(0==j) {

res[j] = v[j];

} else if((N-1)==j) {

res[j] = v[j];

} else {

res[j] = (v[j-1] + v[j+1])/2.0;

}

}

▶ Timings:
APL TD 82.6s
APL ROT 203.9s
APL SHF 236.9s

Robert Bernecky, Sven-Bodo Scholz Abstract Expressionism for Parallel Performance

Serial Relaxation in C Using IF/THEN/ELSE

for(j=0; j<N; j++) {

if(0==j) {

res[j] = v[j];

} else if((N-1)==j) {

res[j] = v[j];

} else {

res[j] = (v[j-1] + v[j+1])/2.0;

}

}

▶ Timings:

APL TD 82.6s
APL ROT 203.9s
APL SHF 236.9s
C IF/THEN/ELSE 16.3s

Robert Bernecky, Sven-Bodo Scholz Abstract Expressionism for Parallel Performance

Serial Relaxation in C Using Conditional Expressions

for(j=0; j<N; j++) {

res[j] = (0==j) ? v[j] :

((N-1)==j) ? v[j] :

(v[j-1] + v[j+1])/2.0;

}

▶ Timings:

APL TD 82.6s
APL ROT 203.9s
APL SHF 236.9s
C IF/THEN/ELSE 16.3s
C COND 16.4s

Robert Bernecky, Sven-Bodo Scholz Abstract Expressionism for Parallel Performance

Serial Relaxation in SAC Using Conditional Expressions

res = with {

([0] <= [j] < [N]) :

(0==j) ? v[j] :

((N-1)==j) ? v[j] :

(v[j-1] + v[j+1])/2.0;

} : modarray(v);

▶ Timings:

APL TD 82.6s
APL ROT 203.9s
APL SHF 236.9s
C IF/THEN/ELSE 16.3s
C COND 16.4s
SAC COND 12.0s

Robert Bernecky, Sven-Bodo Scholz Abstract Expressionism for Parallel Performance

Serial Relaxation in SAC, Hand-Optimized

Can SAC do better?
Three data-parallel With-Loop partitions:

res = with {

([0] <= [j] < [1]) : v[j];

([1] <= [j] < [N-1]) :

(v[j-1] + v[j+1])/2.0;

([N-1] <= [j] < [N]) : v[j];

} : modarray(v);

▶ Timings:

APL TD 82.6s
APL ROT 203.9s
APL SHF 236.9s
C IF/THEN/ELSE 16.3
C COND 16.4
SAC COND 12.0s
SAC HAND 5.9s

Robert Bernecky, Sven-Bodo Scholz Abstract Expressionism for Parallel Performance

Serial Relaxation using Abstract Expressionism and APEX

▶ Take and drop algorithm in APEX
▶ TDû{(1Ù×),(((2Õ×)+¢2Õ×)ß2.0),¢1Ù×}
▶ Approximate APEX-generated SAC code

mid = (drop([2],v)+drop([-2],v))/2.0;

res = take([1],v)++mid++take([-1],v);

▶ Timings:
APL TD 82.6s
SAC HAND 5.9s
APEX TD 5.9s

▶ Identical inner loops for APEX TD and SAC HAND

Robert Bernecky, Sven-Bodo Scholz Abstract Expressionism for Parallel Performance

Serial Relaxation using Abstract Expressionism and APEX

ROTû{NûÒ×
 mû(0=ÉN)©(N-1)=ÉN
 (m«×)+(~m)«((1÷×)+¢1÷×)ß2.0}

m = (0 == iota(N)) | ((N-1) == iota(N));

res = (tod(m) * v) + tod(!m) *

((rotate([1], v) + rotate([-1], v)))/2.0;

▶ Rotate algorithm in APEX, generated SAC code

▶ Timings:
APL ROT 82.6s
SAC HAND 5.9s
APEX ROT 5.9s

▶ Identical inner loops for APEX ROT and SAC HAND

Robert Bernecky, Sven-Bodo Scholz Abstract Expressionism for Parallel Performance

Serial Relaxation using Abstract Expressionism and APEX

SHFû{NûÒ×
 mû(0=ÉN)©(N-1)=ÉN
 (m«×)+(~m)«((1 shift ×)+¢1 shift ×)ß2}
 shiftû{((«Á)«Ò×)ÙÁÕ×}

m = (0 == iota(N)) | ((N-1) == iota(N));

res = (tod(m) * v) + tod(!m) *

((shift([1],v) + shift([-1],v)))/2.0;

▶ Shift algorithm in APEX-generated SAC code

▶ Timings:

APL TD 82.6s
APL ROT 203.9s
APL SHF 236.9s
SAC HAND 5.9s
APEX TD 5.9s
APEX ROT 5.9s
APEX SHIFT 5.9s

▶ ALL inner loops are identical!
Robert Bernecky, Sven-Bodo Scholz Abstract Expressionism for Parallel Performance

Why are Identical Inner Loops Noteworthy?

▶ APL source codes differ substantially
▶ Very different SAC stdlib code for rotate, shift, take/drop
▶ E.g., number of With-Loops, setup code style
▶ See paper for stdlib code, here:

http://www.snakeisland.com/abstractexpressionism.pdf

Robert Bernecky, Sven-Bodo Scholz Abstract Expressionism for Parallel Performance

Serial Performance GFLOPS

▶ Hard to do better? SAC/APEX approach maximum GFLOPS
rate

▶ Let’s look at parallel execution

1 2 3 4 5 6 7 8
0

1

2

3

4

Number of threads

G
FL

O
P
/s

Serial Relaxation Performance (One FPU)

Theoretical Peak Perf.

SAC Hand

APEX Rotate

APEX Shift

APEX TakeDrop

SAC Cond

C If/then/else

APL TakeDrop

APL Rotate

APL Shift

Robert Bernecky, Sven-Bodo Scholz Abstract Expressionism for Parallel Performance

Parallel Relaxation Speedup in C

▶ Open MP
▶ Basic idea: Introduce ceremonial rubbish into SOURCE code
▶ See paper for ceremonial details
▶ Basic idea: Introduce pragmas into SOURCE code

#pragma omp parallel for

after SOME for statements.
▶ Compile with -fopenmp

Robert Bernecky, Sven-Bodo Scholz Abstract Expressionism for Parallel Performance

Parallel Relaxation Speedup in C Performance

▶ Timings: (higher is better)

▶
1 2 3 4 5 6 7 8

0

2

4

6

8

Number of threads

G
FL

O
P
/s

Relaxation Performance

ifc

Robert Bernecky, Sven-Bodo Scholz Abstract Expressionism for Parallel Performance

Optimized Parallel Relaxation in C

for(j=0; j<N; j++) {

if(0==j) {

res[j] = v[j];

} else if((N-1)==j) {

res[j] = v[j];

} else {

res[j] = (v[j-1] + v[j+1])/2.0;

}

}

▶ Bright idea: Replace multiple "res[j] =" by "el ="
▶ Bright idea: and add "res[j] = el;" after IF-statement
▶ Rationale: Eliminate multiple indexed assigns into "res"
▶ This should improve instruction cache use

Robert Bernecky, Sven-Bodo Scholz Abstract Expressionism for Parallel Performance

Pessimized Parallel Relaxation in C

▶ Timings: (higher is better)

▶
1 2 3 4 5 6 7 8

0

2

4

6

8

Number of threads

G
FL

O
P
/s

Relaxation Performance

ifc

ifcoptimized

Robert Bernecky, Sven-Bodo Scholz Abstract Expressionism for Parallel Performance

Parallel Relaxation Slowdown in C Post-mortem

for(j=0; j<N; j++) {

if(0==j) {

el = v[j];

} else if((N-1)==j) {

el = v[j];

} else {

el = (v[j-1] + v[j+1])/2.0;

}

res[j] = el;

}

▶ What went wrong?
▶ el is shared, so it hops among all threads
▶ Bottom line: Bright idea not so bright (watch system monitor!)
▶ Bottom line: Writing parallel C code is NOT trivial

Robert Bernecky, Sven-Bodo Scholz Abstract Expressionism for Parallel Performance

Serial and Parallel Relaxation Performance

▶ Abstract expressionist APL matches best SAC code
▶ SAC and APL beat C by 2.75X in serial environment
▶ SAC and APL beat Open MP C by 1/3 in parallel environment
▶ NO changes to APL code for parallel execution, unlike C

Robert Bernecky, Sven-Bodo Scholz Abstract Expressionism for Parallel Performance

Serial and Parallel Relaxation Performance

Higher is better

1 2 3 4 5 6 7 8
0

2

4

6

8

10

12

14

16

Number of threads

G
FL

O
P
/s

Relaxation Performance

Theoretical Peak Perf.

shifts

hands
rotates

takedrops

handc

conds

ifs

condc

condstc

handstc

ifc

ifstc

Robert Bernecky, Sven-Bodo Scholz Abstract Expressionism for Parallel Performance

SAC Keys to High-Performance FAL Compilation

▶ Provide purely functional Intermediate Language (IL)
▶ Preserve array semantics in IL
▶ Scalarize small arrays, e.g.:
▶ in Gaussian Elimination pivot, replacing:
mat[rowa,rowb;]ûmat[rowb,rowa;]

by
trowûmat[rowa;] þ mat[rowa;]ûmat[rowb;] þ
mat[rowb;]ûtrow

▶ . . . gives 2X speedup!
▶ Do scalarization in the compiler, NOT in app source code.
▶ Use array-based optimizations, e.g., with-loop folding (WLF)
▶ and others. . .
▶ Stay tuned for the book!

Robert Bernecky, Sven-Bodo Scholz Abstract Expressionism for Parallel Performance

This work was supported in part by grant EP/L00058X/1, from the
UK Engineering and Physical Sciences Research Council (EPSRC).
The late Ken Iverson, an Albertan farm boy, had many excellent
insights, for which we are grateful. The excellent performance of
the sac2c compiler is due to the diligence of many researchers,
whose contributions can be found on the SaC web site at
http:sac-home.org. Our thanks to Philip Mucci and John D.
McCalpin for answering our AMD architecture questions. We also
thank the anonymous referees for their thoughtful comments.
Thank you! Questions?

Robert Bernecky, Sven-Bodo Scholz Abstract Expressionism for Parallel Performance

	Acknowledgements

