DVALOC

The Dyalog Project Project (DP2)

Morten Kromberg

JDYALOC

Sicily 2015

¥ #dyalog15



DVALOC

The next best thing
to knowing something is
knowing where to find it.

Samuel Johnson

From “Why APL Programmers don’t use Libraries”
Morten Kromberg, April 2003 (Vector Vol 20, No 1)
http://archive.vector.org.uk/art10004590

¥ #dyalog15 DP2 - The Dyalog Project Project


http://archive.vector.org.uk/art10004590

DYALOC

The Dyalog Project Project (DP2)

[New] Dyalog Users need a COMMON way to describe software
projects implemented in Dyalog APL. We need to:

Ideally, start with a prefabricated sample
— Console Application, OWC GUI App, Web Service, ...

Manage the Source Code that we write (diff, blame, revert, etc)
Locate Tools and Utilities
Include and Manage Dependencies

— Common Tools and Utilities as well as larger Modules
Build and deploy Runtime Environments
— Optionally obfuscating / encrypting the source

Create and run Automated Tests
On all supported platforms, of course!

¥ #dyalogl15 DP2 - The Dyalog Project Project




DVALOC

Manage The Source Code

* A DP2 project will be a folder with a standard layout and some
configuration files

* The configuration or “Project Description” files will themselves be
Unicode Text files which can be managed along with the code

* The user decides whether to use SVN, Git[Hub], Mercurial or [the
next cool thing] to manage the source

— We are NOT building yet another source code management tool

* Any other approach would completely undermine the project.
Binary formats are NOT an option for source.

¥ #dyalogl15 DP2 - The Dyalog Project Project



DYALOC

Interpreter Support for Text Source

* We plan to add support for load/save (including auto-
save-on-edit) of textual source to the v15.0 interpreter
— Future versions of APL may be able to operate without the
source code in the workspace (e.g. only “compiled” code)
— We may be able to preserve source code exactly as entered by

the user ©
— Support for saving the source of # and individual functions

e SALT will continue to exist and use this layer
(it currently uses APL code for Unicode file processing)

¥ #dyalogl15 DP2 - The Dyalog Project Project



DYALOC

Build Runtime Environments

* Wide variety of target environments

Workspaces and Bound Executables

Microsoft.Net Assemblies and COM Components

MiSites and Web Services

Component Files and External Workspaces

“Packages” that can be depended on by other DP2 projects
Create your own target using ...

* Simple DSL to describe target environments
— Think: lightweight version of IP Sharp’s LOGOS

* Goal: Support new projects immediately for new users,

eventually also “legacy” runtime environments

¥ #dyalogl15

DP2 - The Dyalog Project Project




DVALOC

Installers

* Eventually, we want to be able to build an installer for
your runtime environment
— Check for dependencies at install time

* A bridge too far for v1.0

¥ #dyalog15 DP2 - The Dyalog Project Project



DVALOC

Locate Tools and Utilities

* We will collect and organize Standard Libraries
— files, strings, dates, xml, json, sql, parsing, e-mail, error logging
— ... we already have many of these in MiServer ...
— “Cross Platform” if at all possible
— Searchable online

* These — and everything else related to DP2 — will be
provided as open-source repositories
(https://github.com/dyalog)

* The tool library should also be easy to use for projects
not based on DP2

¥ #dyalogl15 DP2 - The Dyalog Project Project



https://github.com/dyalog

DYALOC

Manage Dependencies

* Perhaps the hardest piece of design: Declare dependencies on
functions, modules or “packages”

— We will research existing packages: npm, pip, cask, cargo and the GNU
APL and Jsoftware package managers for inspiration

* [Pre]Build: Copy/download or link to specific versions of an external
dependency
* At Runtime: Import something from the deployed runtime
environment
- Import entire classes or namespaces
— Import individual functions from a namespace INTO something
* Indirect dependency via named “resources”, for easy substitution:
— Run a test with v2.2 rather than v2.1 of a dependency
— Substitute module “database” with “mockdb”

* Hooks to allow sophisticated user to intercept all file access

¥ #dyalogl15 DP2 - The Dyalog Project Project



DVALOC

Test Automation

* We should include a tool for defining and running
automated unit and integration tests

(waves hands)

* Also a tricky piece of design to get the balance right.

* Possibly best to provide hooks and allow people to add
test frameworks — Dyalog will provide one or two simple
defaults

¥ #dyalogl15 DP2 - The Dyalog Project Project



DVALOC

Pre-Fabricated Samples

We need to build a collection of sample applications:

— Console / Scriptable Application

- [WC GUI Application with menus, icons and a grid
— A WPF application with menus, routed events, etc
— A Web (MiSite) Site

— A Web Service

— Microsoft.Net Assemblies for various purposes

— And so on...

¥ #dyalog15 DP2 - The Dyalog Project Project



DVALOC

Utility Libraries

* Files  WPF

e Strings * Win32 GUI (OWC)

* Dates * Configuration (INI/REG)

o XML * Crypto

* JSON * Dictionaries

 SQL * Test Automation (e.g. Selenium)
* Web Client Requests

e Parsing

*  E-mail

e [error] logging
* Inverted Database (vecdb)

¥ #dyalog15 DP2 - The Dyalog Project Project




OVALOC
Status

* Very early design stage
e Version 0.1 “in the spring”

* Expected to take several cycles to reach maturity

¥ #dyalog15 DP2 - The Dyalog Project Project




DVALOC

Why Will We Succeed This Time?

e Because we must

* Dyalog will now invest significant
resources in it

* What can you do?
— Contribute to design discussions
— Demand things
— Contribute libraries or sample applications

¥ #dyalogl15 DP2 - The Dyalog Project Project



DVALOC

One part of knowledge
consists in being ignorant
of such things as are not
worthy to be known.

Crates of Thebes

- “DP2” must be easy to use, and
easy not to use (or even know about)

¥ #dyalog15 DP2 - The Dyalog Project Project



	The Dyalog Project Project (DP2)
	Slide Number 2
	The Dyalog Project Project (DP2)
	Manage The Source Code
	Interpreter Support for Text Source
	Build Runtime Environments
	Installers
	Locate Tools and Utilities
	Manage Dependencies
	Test Automation
	Pre-Fabricated Samples
	Utility Libraries
	Status
	Why Will  We Succeed This Time?
	Slide Number 15

