
The Dyalog Project Project (DP2) 
Morten Kromberg 



The next best thing 
to knowing something is 
knowing where to find it. 
  
Samuel Johnson 

DP2 - The Dyalog Project Project 

From “Why APL Programmers don’t use Libraries” 
Morten Kromberg, April 2003 (Vector Vol 20, No 1) 
http://archive.vector.org.uk/art10004590 
 

http://archive.vector.org.uk/art10004590


The Dyalog Project Project (DP2) 
[New] Dyalog Users need a COMMON way to describe software 
projects implemented in Dyalog APL. We need to: 
• Ideally, start with a prefabricated sample 

– Console Application, ⎕WC GUI App, Web Service, … 
• Manage the Source Code that we write (diff, blame, revert, etc) 
• Locate Tools and Utilities 
• Include and Manage Dependencies 

– Common Tools and Utilities as well as larger Modules 
• Build and deploy Runtime Environments 

– Optionally obfuscating / encrypting the source 
• Create and run Automated Tests 
• On all supported platforms, of course! 

DP2 - The Dyalog Project Project 



Manage The Source Code 
• A DP2 project will be a folder with a standard layout and some 

configuration files  
• The configuration or “Project Description” files will themselves be 

Unicode Text files which can be managed along with the code 
• The user decides whether to use SVN, Git[Hub], Mercurial or [the 

next cool thing] to manage the source 
– We are NOT building yet another source code management tool 

 
• Any other approach would completely undermine the project. 

Binary formats are NOT an option for source. 
 

DP2 - The Dyalog Project Project 



Interpreter Support for Text Source 

• We plan to add support for load/save (including auto-
save-on-edit) of textual source to the v15.0 interpreter 
– Future versions of APL may be able to operate without the 

source code in the workspace (e.g. only “compiled” code) 
– We may be able to preserve source code exactly as entered by 

the user  
– Support for saving the source of # and individual functions 

 

• SALT will continue to exist and use this layer 
(it currently uses APL code for Unicode file processing) 

DP2 - The Dyalog Project Project 



Build Runtime Environments 

• Wide variety of target environments 
– Workspaces and Bound Executables 
– Microsoft.Net Assemblies and COM Components 
– MiSites and Web Services 
– Component Files and External Workspaces 
– “Packages” that can be depended on by other DP2 projects 
– Create your own target using … 

• Simple DSL to describe target environments 
– Think: lightweight version of IP Sharp’s LOGOS 

• Goal: Support new projects immediately for new users, 
eventually also “legacy” runtime environments 

 
 DP2 - The Dyalog Project Project 



Installers 

• Eventually, we want to be able to build an installer for 
your runtime environment 
– Check for dependencies at install time 

• A bridge too far for v1.0 

DP2 - The Dyalog Project Project 



Locate Tools and Utilities 

• We will collect and organize Standard Libraries 
– files, strings, dates, xml, json, sql, parsing, e-mail, error logging 
– … we already have many of these in MiServer … 
– “Cross Platform” if at all possible 
– Searchable online 

• These – and everything else related to DP2 – will be 
provided as open-source repositories 
(https://github.com/dyalog) 

 

• The tool library should also be easy to use for projects 
not based on DP2 

 
DP2 - The Dyalog Project Project 

https://github.com/dyalog


Manage Dependencies 
• Perhaps the hardest piece of design: Declare dependencies on 

functions, modules or “packages” 
– We will research existing packages: npm, pip, cask, cargo and the GNU 

APL and Jsoftware package managers for inspiration 
• [Pre]Build: Copy/download or link to specific versions of an external 

dependency 
• At Runtime: Import something from the deployed runtime 

environment 
– Import entire classes or namespaces 
– Import individual functions from a namespace INTO something 

• Indirect dependency via named “resources”, for easy substitution: 
– Run a test with v2.2 rather than v2.1 of a dependency 
– Substitute module “database” with “mockdb” 

• Hooks to allow sophisticated user to intercept all file access 
 

DP2 - The Dyalog Project Project 



Test Automation 

• We should include a tool for defining and running 
automated unit and integration tests 
 
(waves hands) 
 

• Also a tricky piece of design to get the balance right. 
• Possibly best to provide hooks and allow people to add 

test frameworks – Dyalog will provide one or two simple 
defaults 

DP2 - The Dyalog Project Project 



Pre-Fabricated Samples 

We need to build a collection of sample applications: 
 
– Console / Scriptable Application 
– ⎕WC GUI Application with menus, icons and a grid 
– A WPF application with menus, routed events, etc 
– A Web (MiSite) Site 
– A Web Service 
– Microsoft.Net Assemblies for various purposes 
– And so on… 

DP2 - The Dyalog Project Project 



Utility Libraries 
• Files 
• Strings 
• Dates 
• XML 
• JSON 
• SQL 
• Web Client Requests 
• Parsing 
• E-mail 
• [error] logging 
• Inverted Database (vecdb) 

 
DP2 - The Dyalog Project Project 

• WPF 
• Win32 GUI (⎕WC) 
• Configuration (INI/REG) 
• Crypto 
• Dictionaries 
• Test Automation (e.g. Selenium) 

 



Status 

• Very early design stage 
• Version 0.1 “in the spring” 
• Expected to take several cycles to reach maturity 

DP2 - The Dyalog Project Project 



Why Will  We Succeed This Time? 

• Because we must 
• Dyalog will now invest significant 

resources in it 
 

• What can you do? 
– Contribute to design discussions 
– Demand things 
– Contribute libraries or sample applications 

DP2 - The Dyalog Project Project 



One part of knowledge 
consists in being ignorant  
of such things as are not 
worthy to be known. 
 

DP2 - The Dyalog Project Project 

  “DP2” must be easy to use, and 
      easy not to use (or even know about) 

Crates of Thebes 


	The Dyalog Project Project (DP2)
	Slide Number 2
	The Dyalog Project Project (DP2)
	Manage The Source Code
	Interpreter Support for Text Source
	Build Runtime Environments
	Installers
	Locate Tools and Utilities
	Manage Dependencies
	Test Automation
	Pre-Fabricated Samples
	Utility Libraries
	Status
	Why Will  We Succeed This Time?
	Slide Number 15

