The Three Beaars

Basically, Every Array Allocation Reduces Speed

Robert Bernecky

Snake Island Research Inc
18 Fifth Street, Ward's Island
Toronto, Canada
tel: +1 416 203 0854
bernecky@snakeisland.com

October 10, 2012

Robert Bernecky The Three Beaars — Dyalog '12

Abstract

Functional array language compiler and interpreter designers
try to reduce the number of arrays created during application
execution, because the negative impact of arrays on
performance is so dramatic.

Just as The Three Bears had different requirements for their
own satisfaction, so do differing array shapes have different
requirements for their elimination. The problem itself is a bear:
scalar operations are the baby bear, typified here by dynamic
programming and the Floyd-Warshall algorithm; operations on
small arrays, such as numerically intense computations on
complex arrays, is the mama bear; operations on large arrays,
typified by acoustic signal processing, is the papa bear.

We compare interpreted to compiled APL performance for
several applications with different array shapes, and give an
overview of the various optimizations that enable those
speedups, in both serial and parallel contexts.

Robert Bernecky The Three Beaars — Dyalog '12

The APEX-SaC tool chain

» APEX: APL-to-SaC compiler (R. Bernecky)

Robert Bernecky The Three Beaars — Dyalog '12

The APEX-SaC tool chain

» APEX: APL-to-SaC compiler (R. Bernecky)
» SaC: SaC-to-C compiler (S.B. Scholz)

Robert Bernecky The Three Beaars — Dyalog '12

The APEX-SaC tool chain

» APEX: APL-to-SaC compiler (R. Bernecky)
» SaC: SaC-to-C compiler (S.B. Scholz)
» APEX & SaC preserve arrays throughout compilation

Robert Bernecky The Three Beaars — Dyalog '12

The APEX-SaC tool chain

v

APEX: APL-to-SaC compiler (R. Bernecky)
SaC: SaC-to-C compiler (' S.B. Scholz)
APEX & SaC preserve arrays throughout compilation

v

v

v

SaC is a purely functional compiler

Robert Bernecky The Three Beaars — Dyalog '12

The APEX-SaC tool chain

v

APEX: APL-to-SaC compiler (R. Bernecky)
SaC: SaC-to-C compiler (' S.B. Scholz)
APEX & SaC preserve arrays throughout compilation

v

v

v

SaC is a purely functional compiler

v

SaC represents control structures as functions

Robert Bernecky The Three Beaars — Dyalog '12

The APEX-SaC tool chain

v

APEX: APL-to-SaC compiler (R. Bernecky)
SaC: SaC-to-C compiler (' S.B. Scholz)
APEX & SaC preserve arrays throughout compilation

v

v

v

SaC is a purely functional compiler

v

SaC represents control structures as functions

v

These characteristics are a mixed blessing. . .

Robert Bernecky The Three Beaars — Dyalog '12

Why are arrays expensive?

» Consider the cost to perform Z<X+Y:

Robert Bernecky The Three Beaars — Dyalog '12

Why are arrays expensive?

» Consider the cost to perform Z<X+Y:

> (Interpreter) Parse code to find expression: 200ops

Robert Bernecky The Three Beaars — Dyalog '12

Why are arrays expensive?

» Consider the cost to perform Z<X+Y:
> (Interpreter) Parse code to find expression: 2000ps

» Increment reference counts on X,Y: 500ps

Robert Bernecky The Three Beaars — Dyalog '12

Why are arrays expensive?

Consider the cost to perform Z<X+Y:
(Interpreter) Parse code to find expression: 2000ps

v

v

Increment reference counts on X, Y: 500ps
Conformance checks (type, rank, shape) for addition: 2000ps

v

v

Robert Bernecky The Three Beaars — Dyalog '12

Why are arrays expensive?

Consider the cost to perform Z<X+Y:

v

v

(Interpreter) Parse code to find expression: 2000ps

Increment reference counts on X, Y: 500ps

v

Conformance checks (type, rank, shape) for addition: 2000ps

v

v

Allocate temp for result from heap: 2000ps

Robert Bernecky The Three Beaars — Dyalog '12

Why are arrays expensive?

Consider the cost to perform Z<X+Y:

v

v

(Interpreter) Parse code to find expression: 2000ps

v

Increment reference counts on X, Y: 500ps

v

Conformance checks (type, rank, shape) for addition: 2000ps

v

Allocate temp for result from heap: 2000ps

v

Initialize temp: 1000ps

Robert Bernecky The Three Beaars — Dyalog '12

Why are arrays expensive?

Consider the cost to perform Z<X+Y:

v

v

(Interpreter) Parse code to find expression: 2000ps

v

Increment reference counts on X, Y: 500ps

v

Conformance checks (type, rank, shape) for addition: 2000ps

v

Allocate temp for result from heap: 2000ps

v

Initialize temp: 1000ps

v

Perform actual additions: 2000ps

Robert Bernecky The Three Beaars — Dyalog '12

Why are arrays expensive?

» Consider the cost to perform Z<X+Y:

> (Interpreter) Parse code to find expression: 2000ps

» Increment reference counts on X,Y: 500ps

» Conformance checks (type, rank, shape) for addition: 2000ps
> Allocate temp for result from heap: 2000ps

> Initialize temp: 1000ps

> Perform actual additions: 2000ps

» Decrement reference counts on X,Y: 500ps

Robert Bernecky The Three Beaars — Dyalog '12

Why are arrays expensive?

» Consider the cost to perform Z<X+Y:

> (Interpreter) Parse code to find expression: 2000ps

» Increment reference counts on X,Y: 500ps

» Conformance checks (type, rank, shape) for addition: 2000ps
> Allocate temp for result from heap: 2000ps

> Initialize temp: 1000ps

> Perform actual additions: 2000ps

» Decrement reference counts on X,Y: 500ps

» Deallocate old Z, if any: 1000ps

Robert Bernecky The Three Beaars — Dyalog '12

Why are arrays expensive?

» Consider the cost to perform Z<X+Y:

> (Interpreter) Parse code to find expression: 2000ps

» Increment reference counts on X,Y: 500ps

» Conformance checks (type, rank, shape) for addition: 2000ps
> Allocate temp for result from heap: 2000ps

> Initialize temp: 1000ps

> Perform actual additions: 2000ps

» Decrement reference counts on X,Y: 500ps

» Deallocate old Z, if any: 1000ps

> Assign Z<temp: 500ps

Robert Bernecky The Three Beaars — Dyalog '12

Why are arrays expensive?

» Consider the cost to perform Z<X+Y:

> (Interpreter) Parse code to find expression: 2000ps
» Increment reference counts on X,Y: 500ps

» Conformance checks (type, rank, shape) for addition: 2000ps
> Allocate temp for result from heap: 2000ps

> Initialize temp: 1000ps

> Perform actual additions: 2000ps

» Decrement reference counts on X,Y: 500ps

» Deallocate old Z, if any: 1000ps

> Assign Z<temp: 500ps

» TOTAL: 11500ps

Robert Bernecky The Three Beaars — Dyalog '12

Why are arrays expensive?

» Consider the cost to perform Z<X+Y:

> (Interpreter) Parse code to find expression: 2000ps
» Increment reference counts on X,Y: 500ps

» Conformance checks (type, rank, shape) for addition: 2000ps
> Allocate temp for result from heap: 2000ps

> Initialize temp: 1000ps

> Perform actual additions: 2000ps

» Decrement reference counts on X,Y: 500ps

» Deallocate old Z, if any: 1000ps

> Assign Z<temp: 500ps

» TOTAL: 11500ps

» vs. compiled scalar code: 100ops

Robert Bernecky The Three Beaars — Dyalog '12

Baby Bear - Eliminating Scalar Arrays in a Compiler

» Use classical static data flow analysis to find scalars

Robert Bernecky The Three Beaars — Dyalog '12

Baby Bear - Eliminating Scalar Arrays in a Compiler

> Use classical static data flow analysis to find scalars
» Traditional optimization methods: CSE, VP, CP, etc.

Robert Bernecky The Three Beaars — Dyalog '12

Baby Bear - Eliminating Scalar Arrays in a Compiler

> Use classical static data flow analysis to find scalars
» Traditional optimization methods: CSE, VP, CP, etc.

» Allocate scalars on stack, instead of heap

Robert Bernecky The Three Beaars — Dyalog '12

Baby Bear - Eliminating Scalar Arrays in a Compiler

Use classical static data flow analysis to find scalars
Traditional optimization methods: CSE, VP, CP, etc.

v

v

Allocate scalars on stack, instead of heap

v

v

Generate scalar-specific code

Robert Bernecky The Three Beaars — Dyalog '12

Baby Bear - Eliminating Scalar Arrays in a Compiler

v

Use classical static data flow analysis to find scalars
Traditional optimization methods: CSE, VP, CP, etc.

Allocate scalars on stack, instead of heap

v

v

v

Generate scalar-specific code

v

This is challenging to do in an interpreter

Robert Bernecky The Three Beaars — Dyalog '12

Baby Bear - Eliminating Scalar Arrays in a Compiler

v

Use classical static data flow analysis to find scalars
Traditional optimization methods: CSE, VP, CP, etc.

v

v

Allocate scalars on stack, instead of heap

v

Generate scalar-specific code

v

This is challenging to do in an interpreter
Experimental platform: AMD 1075T 6-core CPU, 3.2GHz

v

Robert Bernecky The Three Beaars — Dyalog '12

Baby Bear - Eliminating Scalar Arrays in a Compiler

v

Use classical static data flow analysis to find scalars
Traditional optimization methods: CSE, VP, CP, etc.

Allocate scalars on stack, instead of heap

v

v

v

Generate scalar-specific code

v

This is challenging to do in an interpreter
Experimental platform: AMD 1075T 6-core CPU, 3.2GHz
(cheap ASUS M4A88T-M desktop machine)

v

v

Robert Bernecky The Three Beaars — Dyalog '12

Baby Bear Problem: Floyd-Warshall Algorithm

z<floyd D;i;j;k
siz<1(PD)LO]
:For k :In siz
tFor 1 :In siz
tFor j :In siz
D[i1;j1«Dl[i;3jILDI[i;k1+Dl[k;31]
:EndFor
:EndFor
:EndFor

» Problem size: 3000x3000 graph

Robert Bernecky The Three Beaars — Dyalog '12

Baby Bear Problem: Floyd-Warshall Algorithm

z<floyd D;i;j;k
siz<1(PD)LO]
:For k :In siz
tFor 1 :In siz
tFor j :In siz
D[i1;j1«Dl[i;3jILDI[i;k1+Dl[k;31]
:EndFor
:EndFor
:EndFor

> Problem size: 3000x3000 graph
» Dyalog APL, J interpreters: one week-ish; APEX/SAC: 103sec

Robert Bernecky The Three Beaars — Dyalog '12

Baby Bear Problem: Floyd-Warshall Algorithm

z<floyd D;i;j;k
siz<1(PD)LO]
:For k :In siz
tFor 1 :In siz
tFor j :In siz
D[i1;j1«Dl[i;3jILDI[i;k1+Dl[k;31]
:EndFor
:EndFor
:EndFor

> Problem size: 3000x3000 graph
» Dyalog APL, J interpreters: one week-ish; APEX/SAC: 103sec
» Dynamic programming (string shuffle): >1000X speedup

Robert Bernecky The Three Beaars — Dyalog '12

Baby Bear Problem: Floyd-Warshall Algorithm

z<floyd D;i;j;k
siz<1(PD)LO]
:For k :In siz
tFor 1 :In siz
tFor j :In siz
D[i1;j1«Dl[i;3jILDI[i;k1+Dl[k;31]
:EndFor
:EndFor
:EndFor

> Problem size: 3000x3000 graph

» Dyalog APL, J interpreters: one week-ish; APEX/SAC: 103sec
» Dynamic programming (string shuffle): >1000X speedup

» Lesson: Interpreters dislike scalar-dominated algorithms

Robert Bernecky The Three Beaars — Dyalog '12

Baby Bear Problem: Floyd-Warshall Algorithm

z<floyd D;i;j;k
siz<1(PD)[0]
:For k :In siz
:For 1 :In siz
tFor j :In siz
D[i;31«D[i;3I1LDIi;k1+Dl[k;3]
:EndFor
:EndFor
:EndFor
Problem size: 3000x3000 graph
Dyalog APL, J interpreters: one week-ish; APEX/SAC: 103sec
Dynamic programming (string shuffle): >1000X speedup
Lesson: Interpreters dislike scalar-dominated algorithms
Lesson: Compilers are not fussy; Baby bear problem solved!

vy vV v VY

Robert Bernecky The Three Beaars — Dyalog '12

Baby Bear Problem: Floyd-Warshall Algorithm

z<floyd D;i;j;k
siz<1(PD)LO]
:For k :In siz
tFor 1 :In siz
tFor j :In siz
D[i1;j1«Dl[i;3jILDI[i;k1+Dl[k;31]
:EndFor
:EndFor
:EndFor

Problem size: 3000x3000 graph

Dyalog APL, J interpreters: one week-ish; APEX/SAC: 103sec
Dynamic programming (string shuffle): >1000X speedup
Lesson: Interpreters dislike scalar-dominated algorithms
Lesson: Compilers are not fussy; Baby bear problem solved!
But, no parallelism: Adding threads just makes it slower!

vV VY vy vV VY

Robert Bernecky The Three Beaars — Dyalog '12

Baby Bear Problem: Floyd-Warshall Algorithm

z<floyd D;i;j;k
siz<1(PD)LO]
:For k :In siz
tFor 1 :In siz
tFor j :In siz
D[i1;j1«Dl[i;3jILDI[i;k1+Dl[k;31]
:EndFor
:EndFor
:EndFor

Problem size: 3000x3000 graph

Dyalog APL, J interpreters: one week-ish; APEX/SAC: 103sec
Dynamic programming (string shuffle): >1000X speedup
Lesson: Interpreters dislike scalar-dominated algorithms
Lesson: Compilers are not fussy; Baby bear problem solved!
But, no parallelism: Adding threads just makes it slower!
What about array-based solutions? It's papa bear time!

Robert Bernecky The Three Beaars — Dyalog '12

vV vV vV V. VvV VY

Array-based Floyd-Warshall Algorithm

» j64-602, from J Essays (CDC STAR APL algorithm variant)
floyd=: 3 :
("for_j. i.#y';'do.
y=. y <. j "1+ Dy
end.';'y")

Robert Bernecky The Three Beaars — Dyalog '12

Array-based Floyd-Warshall Algorithm

» j64-602, from J Essays (CDC STAR APL algorithm variant)
floyd=: 3 :
('"for_j. 1i.#y';'do.
y=- y <. j {1+ y'
end.';'y")
» SAC: Scholz & Bernecky (Classic matmul variant)
inline int[.,.] floydSbsi(int[.,.] D) {
DT = transpose(D);
res = with
(. <= [1i,7] <=)
min(D[i,j], minval(D[i] + DT[jl1));
modarray (D) ;
return(res);

}

Robert Bernecky The Three Beaars — Dyalog '12

Array-based Floyd-Warshall Algorithm

» j64-602, from J Essays (CDC STAR APL algorithm variant)
floyd=: 3 :
('"for_j. 1i.#y';'do.
y=- y <. j {1+ y'
end.';'y")
» SAC: Scholz & Bernecky (Classic matmul variant)
inline int[.,.] floydSbsi(int[.,.] D) {
DT = transpose(D);
res = with
(. <= [1,7] <=)
min(D[i,j], minval(D[i] + DT[j1));
modarray (D) ;
return(res);

}

» A "with-loop” is a nested data-parallel FORALL loop

Robert Bernecky The Three Beaars — Dyalog '12

Array-based Floyd-Warshall Algorithm Speedup

Lesson: Array-based code and optimizers are good for you

APEX/SAC (18091) vs. J Performance 2,012—07-20

Speedup

o &3 =2
8 I~ I~
- z Z
& N <F
] 2 5}
= = =
2 2

Algorithm 2

Robert Bernecky The Three Beaars — Dyalog '12

» Z =Vl + (V2 x V3)
for(i=0; i<n; i++) {
copls] - NG
for(j=0; j<m; j++) {
Z[3] = Vv1[j]1 + tmp[jl; }

Robert Bernecky The Three Beaars — Dyalog '12

» Z =Vl + (V2 * V3)
for(i=0; i<mn; i++) {
tmp[i] = ;)
for(j=0; j<n; j++) {
Z[3] = v1[j]1 + tmp[jl; }
» Loop fusion transforms this into:
for(j=0; j<m; j++) {

20 = ity + [)

Robert Bernecky The Three Beaars — Dyalog '12

» Z =Vl + (V2 x V3)
for(i=0; i<mn; i++) {
tmp[i] = ;b
for(j=0; j<m; j++) {
z[j]1 = Vi[j]1 + tmpljl; }
» Loop fusion transforms this into:
for(j=0; j<m; j++) {

203 = it + [REIEEED)

» Benefit: Array-valued tmp removed (DCR)

Robert Bernecky The Three Beaars — Dyalog '12

» Z =Vl + (V2 x V3)
for(i=0; i<mn; i++) {
tmpli] = WRLEIRVSET;)
for(j=0; j<m; j++) {
z[j1 = Vi[j]l + tmp[jl; }
» Loop fusion transforms this into:
for(j=0; j<m; j++) {

203 = it + [REIEEED)

» Benefit: Array-valued tmp removed (DCR)

» Benefit: Reduced memory subsystem traffic

Robert Bernecky The Three Beaars — Dyalog '12

» Z =Vl + (V2 x V3)
for(i=0; i<mn; i++) {
tmpli] = WRLEIRVSET;)
for(j=0; j<m; j++) {
z[j1 = Vi[j]l + tmp[jl; }
» Loop fusion transforms this into:
for(j=0; j<m; j++) {

203 = it + [REIEEED)

» Benefit: Array-valued tmp removed (DCR)

» Benefit: Reduced memory subsystem traffic

» Benefit: Reduced loop overhead

Robert Bernecky The Three Beaars — Dyalog '12

» Z =Vl + (V2 x V3)
for(i=0; i<mn; i++) {
tmpli] = WRLEIRVSET;)
for(j=0; j<m; j++) {
z[j1 = Vi[j]l + tmp[jl; }
» Loop fusion transforms this into:
for(j=0; j<m; j++) {

203 = it + [REIEEED)

» Benefit: Array-valued tmp removed (DCR)

» Benefit: Reduced memory subsystem traffic
» Benefit: Reduced loop overhead

> Benefit: Improved parallelism, in some compilers

Robert Bernecky The Three Beaars — Dyalog '12

With-Loop Folding (WLF) and Algebraic With-Loop

Folding (AWLF)

» WLF (S.B. Scholz) - a generalization of loop fusion

Robert Bernecl ky The Three Beaars — Dyalog '12

With-Loop Folding (WLF) and Algebraic With-Loop

Folding (AWLF)

» WLF (S.B. Scholz) - a generalization of loop fusion
» Handles Arrays of Known Shape (AKS) only

Robert Bernecky The Three Beaars — Dyalog '12

With-Loop Folding (WLF) and Algebraic With-Loop

Folding (AWLF)

» WLF (S.B. Scholz) - a generalization of loop fusion
» Handles Arrays of Known Shape (AKS) only
» AWLF (R. Bernecky)

Robert Bernecky The Three Beaars — Dyalog '12

With-Loop Folding (WLF) and Algebraic With-Loop

Folding (AWLF)

>

WLF (S.B. Scholz) - a generalization of loop fusion
Handles Arrays of Known Shape (AKS) only

AWLF (R. Bernecky)

Handles AKS arrays & Arrays of Known Dimension (AKD)

v

v

v

Robert Bernecky The Three Beaars — Dyalog '12

With-Loop Folding (WLF) and Algebraic With-Loop

Folding (AWLF)

» WLF (S.B. Scholz) - a generalization of loop fusion

» Handles Arrays of Known Shape (AKS) only

» AWLF (R. Bernecky)

» Handles AKS arrays & Arrays of Known Dimension (AKD)

» Acoustic signal processing (delta modulation):
logd«<{ 50750L50x(DIFF 0,w)+0.014+w}
DIFF<{ 1vw-"10w}

Robert Bernecky The Three Beaars — Dyalog '12

WLF /AWLF example: Acoustic Signal Processing

» logd on 200E6-element double-precision vector

sac2c options Serial | Parallel (-mt 6) | Speedup
elapsed time elapsed time
sec sec
APL 7.8s n/a n/a
-nowlf -O3 10.7s 5.5s 1.9X
-doawlf -O3 3.2s 0.7s 4.5X
Speedup 3.3X 7.8X 15X

Robert Bernecky The Three Beaars — Dyalog '12

WLF /AWLF example: Acoustic Signal Processing

» logd on 200E6-element double-precision vector

» Sixteen with-loops are folded into two WLs!

sac2c options Serial | Parallel (-mt 6) | Speedup
elapsed time elapsed time
sec sec
APL 7.8s n/a n/a
-nowlf -O3 10.7s 5.5s 1.9X
-doawlf -O3 3.2s 0.7s 4.5X
Speedup 3.3X 7.8X 15X

Robert Bernecky The Three Beaars — Dyalog '12

WLF /AWLF example: Acoustic Signal Processing

» logd on 200E6-element double-precision vector
» Sixteen with-loops are folded into two WLs!
» WLF/AWLEF increase available parallelism

sac2c options Serial | Parallel (-mt 6) | Speedup
elapsed time elapsed time
sec sec
APL 7.8s n/a n/a
-nowlf -O3 10.7s 5.5s 1.9X
-doawlf -O3 3.2s 0.7s 4.5X
Speedup 3.3X 7.8X 15X

Robert Bernecky The Three Beaars — Dyalog '12

With-Loop Scalarization (WLS)

» With-Loop Scalarization: (C. Grelck, S.B. Scholz, K.
Trojahner)

Robert Bernecky The Three Beaars — Dyalog '12

With-Loop Scalarization (WLS)

» With-Loop Scalarization: (C. Grelck, S.B. Scholz, K.
Trojahner)

» Operates on nested-WLs in which inner loop creates
non-scalar cells

Robert Bernecky The Three Beaars — Dyalog '12

With-Loop Scalarization (WLS)

» With-Loop Scalarization: (C. Grelck, S.B. Scholz, K.
Trojahner)

» Operates on nested-WLs in which inner loop creates
non-scalar cells
» WLS to merge loop-nest pairs, forming a single WL
A = with ([0] <= iv < [4]) {
B = with ([0] <= jv < [4])
genarray([4], iv[0] + 2 * jv[0]);

genarray([4], B);

Robert Bernecky The Three Beaars — Dyalog '12

With-Loop Scalarization (WLS)

» With-Loop Scalarization: (C. Grelck, S.B. Scholz, K.
Trojahner)

» Operates on nested-WLs in which inner loop creates
non-scalar cells
» WLS to merge loop-nest pairs, forming a single WL
A = with ([0] <= iv < [4]) {
B = with ([0] <= jv < [4])
genarray([4], iv[0] + 2 * jv[0]);

genarray([4], B);

» WLS transforms this into:
A = with ([0,0] <= iv < [4,4])
genarray([4,4], iv[0] + 2 * iv[1]);

Robert Bernecky The Three Beaars — Dyalog '12

With-Loop Scalarization (WLS)

» With-Loop Scalarization: (C. Grelck, S.B. Scholz, K.
Trojahner)

» Operates on nested-WLs in which inner loop creates
non-scalar cells

» WLS to merge loop-nest pairs, forming a single WL
A = with ([0] <= iv < [4]) {
B = with ([0] <= jv < [4])
genarray([4], iv[0] + 2 * jv[0]);

genarray([4], B);

» WLS transforms this into:
A = with ([0,0] <= iv < [4,4])
genarray([4,4], iv[0] + 2 * iv[1]);

» Mandatory for good performance: array-valued temps removed

Robert Bernecky The Three Beaars — Dyalog '12

WLF/AWLF /WLS example: Poisson 2-D Relaxation Kernel

From Sven-Bodo Scholz: With-Loop-Folding in Sac
A good argument for Ken lverson’s mask verb!

z<relax A;m;n. . .

m<(PA)[0]

n<(PA)[1]

B<((16A)+(16A)+(10A)+("10A)) +4L
upperA<(1,n)+A
lowerA<((m-1),0)+A

leftA«<1l 0+((m-1),1)4A
rightaA«<((m-2),1)+(1,n-1)+A
innerB<«((m-2),n-2)%1 1B
middle<«leftA, innerB,rightA
z<«upperAymiddleylowerA

Robert Bernecky The Three Beaars — Dyalog '12

Poisson 2-D Relaxation: Multi-thread, Various Grid Sizes

» AWLF, aided by WLS, folds relax function into 1 loop!

Robert Bernecky The Three Beaars — Dyalog '12

Poisson 2-D Relaxation: Multi-thread, Various Grid Sizes

» AWLF, aided by WLS, folds relax function into 1 loop!
» 20K iterations, 250x250 grid: Dyalog APL: CPU time = 47.4s

Robert Bernecky The Three Beaars — Dyalog '12

Poisson 2-D Relaxation: Multi-thread, Various Grid Sizes

» AWLF, aided by WLS, folds relax function into 1 loop!
» 20K iterations, 250x250 grid: Dyalog APL: CPU time = 47.4s
» APEX/SAC 18091, single-thread: CPU time = 3.65s

Robert Bernecky The Three Beaars — Dyalog '12

Poisson 2-D Relaxation: Multi-thread, Various Grid Sizes

>

AWLF, aided by WLS, folds relax function into 1 loop!

20K iterations, 250x250 grid: Dyalog APL: CPU time = 47.4s
APEX/SAC 18091, single-thread: CPU time = 3.65s
APEX/SAC 18091: multi-threaded (no source code changes!)

v

v

v

Robert Bernecky The Three Beaars — Dyalog '12

Poisson 2-D Relaxation: Multi-thread, Various Grid Sizes

APEX/SAC (18091) vs. Dyalog APL 13.0 Performance 2,012-07-19

70x T
6—core AMD Phenom II X6 1075T, 3. ZGHSZ 485

60X [2038 - - - T 33

SOX Ml et 177771 ossm T

40x -2YS| N -

Speedup

30x 3 SsiSl 33

20x o ' B 1 R

10x ==+ WS POl - B O

0x

250x250,20K
00x500,20K
10Kx10K,100

Problem size,Tteration count

Figure: APEX vs. APL CPU time performance

Robert Bernecky The Three Beaars — Dyalog '12

Poisson 2-D Relaxation: Memory footprint

» Why poor speedup on 10Kx10K test?

Robert Bernecky The Three Beaars — Dyalog '12

Poisson 2-D Relaxation: Memory footprint

» Why poor speedup on 10Kx10K test?
» Dyalog APL 13.0, 10Kx10K grid: 8.5GB footprint

Robert Bernecky The Three Beaars — Dyalog '12

Poisson 2-D Relaxation: Memory footprint

» Why poor speedup on 10Kx10K test?
» Dyalog APL 13.0, 10Kx10K grid: 8.5GB footprint
» APEX/SAC 18091: 10Kx10K grid: 3.4GB footprint

Robert Bernecky The Three Beaars — Dyalog '12

Poisson 2-D Relaxation: Memory footprint

» Why poor speedup on 10Kx10K test?

Dyalog APL 13.0, 10Kx10K grid: 8.5GB footprint
APEX/SAC 18091: 10Kx10K grid: 3.4GB footprint
Memory subsystem bandwidth: 4464MB/s

v

v

v

Robert Bernecky The Three Beaars — Dyalog '12

Poisson 2-D Relaxation: Memory footprint

» Why poor speedup on 10Kx10K test?

Dyalog APL 13.0, 10Kx10K grid: 8.5GB footprint
APEX/SAC 18091: 10Kx10K grid: 3.4GB footprint
Memory subsystem bandwidth: 4464MB /s

Grid is 800MB — 5 writes of grid to/from memory/s

v

v

v

v

Robert Bernecky The Three Beaars — Dyalog '12

Poisson 2-D Relaxation: Memory footprint

» Why poor speedup on 10Kx10K test?

» Dyalog APL 13.0, 10Kx10K grid: 8.5GB footprint

» APEX/SAC 18091: 10Kx10K grid: 3.4GB footprint
» Memory subsystem bandwidth: 4464MB/s

» Grid is 800MB — 5 writes of grid to/from memory/s

» Therefore, speedup is eventually memory-limited on cheapo
system

Robert Bernecky The Three Beaars — Dyalog '12

Poisson 2-D Relaxation: Memory footprint

» Why poor speedup on 10Kx10K test?

» Dyalog APL 13.0, 10Kx10K grid: 8.5GB footprint

» APEX/SAC 18091: 10Kx10K grid: 3.4GB footprint
» Memory subsystem bandwidth: 4464MB/s

» Grid is 800MB — 5 writes of grid to/from memory/s

» Therefore, speedup is eventually memory-limited on cheapo
system

> Scholz sees linear speedup on 48-core system

Robert Bernecky The Three Beaars — Dyalog '12

Poisson 2-D Relaxation: Memory footprint

» Why poor speedup on 10Kx10K test?

» Dyalog APL 13.0, 10Kx10K grid: 8.5GB footprint

» APEX/SAC 18091: 10Kx10K grid: 3.4GB footprint
» Memory subsystem bandwidth: 4464MB/s

» Grid is 800MB — 5 writes of grid to/from memory/s

» Therefore, speedup is eventually memory-limited on cheapo
system

» Scholz sees linear speedup on 48-core system

» Lesson: High memory bandwidth is good for you.

Robert Bernecky The Three Beaars — Dyalog '12

Poisson 2-D Relaxation: Memory footprint

» Why poor speedup on 10Kx10K test?

» Dyalog APL 13.0, 10Kx10K grid: 8.5GB footprint

» APEX/SAC 18091: 10Kx10K grid: 3.4GB footprint
» Memory subsystem bandwidth: 4464MB/s

» Grid is 800MB — 5 writes of grid to/from memory/s

» Therefore, speedup is eventually memory-limited on cheapo
system

» Scholz sees linear speedup on 48-core system
> Lesson: High memory bandwidth is good for you.

» Lesson: Array optimizations are VERY good for you.

Robert Bernecky The Three Beaars — Dyalog '12

Mama Bear Motivation

Why is interpreted APL faster than compiled code for some tests?

APL vs. APEX CPU Time Performance (2,012-09-15)

Robert Bernecky

Benchmark name

The Three Beaars — Dyalog '12

c R A A A A A A e A I O A I O
= 1,000 [. o =
= tHigher is bettef|for APEX _ .
<
= i o -
> 100 oo ol el =
i FSAC: 18,221:MODIF|ED
§ |APL: Dyalog ARL 13]0
[A [1 P PRt 1 1 S 1 PO 1 1 1 PO, -
< 10
o
5 L
3
3 1 o |
o L
’ il HH I Ll H |
0.1 I ” il H \ I I
SN N NN NN NN NN N NN NN NN NN
LLLLLLLLLLLLLLLLLLL<LLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLT
>SS EST U S00RCOaTT0TOTNOY NS AT > 20 A5 AT O5X S ONET O 59> 6
2550 3 B o TR a8855282509080525 R L0a5GE o685 25S00 >
35=0908 =55c20la™ " 0un —0009385C £uE5 T $5oE5mos00=3r s
23580 Otz s a5 ——==000F¢ =350 @ 2000 ~“cOPEIO
2ELQ® > o2 £E €9%dn SPes S3c 58
8E05 R g Q 2 SeR3858
8 ¢ = = o582
3 2a5-9
o 55 S
© =]

Mama Bear Motivation

Some reasons for poor performance of compiled SAC code:

» Index vector generation for indexed assign

Robert Bernecky The Three Beaars — Dyalog '12

Mama Bear Motivation

Some reasons for poor performance of compiled SAC code:

» Index vector generation for indexed assign

» Shape vector generation for variable result shapes

Robert Bernecky The Three Beaars — Dyalog '12

Mama Bear Motivation

Some reasons for poor performance of compiled SAC code:

» Index vector generation for indexed assign
» Shape vector generation for variable result shapes

» Generation of small arrays, e.g., complex scalars

Robert Bernecky The Three Beaars — Dyalog '12

Mama Bear Motivation

Some reasons for poor performance of compiled SAC code:

» Index vector generation for indexed assign

» Shape vector generation for variable result shapes
» Generation of small arrays, e.g., complex scalars
» No SaC FOR-loop analog to with-loop

Robert Bernecky The Three Beaars — Dyalog '12

Mama Bear - Small Array Scalarization

» Replace small arrays by their scalarized form

Robert Bernecky The Three Beaars — Dyalog '12

Mama Bear - Small Array Scalarization

» Replace small arrays by their scalarized form

» Optimization: Primitive Function Unrolling (Classic)

Robert Bernecky The Three Beaars — Dyalog '12

Mama Bear - Small Array Scalarization

» Replace small arrays by their scalarized form
» Optimization: Primitive Function Unrolling (Classic)

» Optimization: Index Vector Elimination (IVE) (sacdev)
2-16X speedup observed

Robert Bernecky The Three Beaars — Dyalog '12

Mama Bear - Small Array Scalarization

v

Replace small arrays by their scalarized form
Optimization: Primitive Function Unrolling (Classic)

v

Optimization: Index Vector Elimination (IVE) (sacdev)
2-16X speedup observed

Optimizations: LS, LACSI, LACSO (S.B. Scholz, R. Bernecky)

v

v

Robert Bernecky The Three Beaars — Dyalog '12

Mama Bear - Small Array Scalarization

» Mandelbrot set computation performance

Robert Bernecky The Three Beaars — Dyalog '12

Mama Bear - Small Array Scalarization

» Mandelbrot set computation performance

» mandelbrot: Uses complex numbers

int calc(complex z, int maxdepth) {...
while(real(z)*real(z)+imag(z)*imag(z)<=4.0)...

Robert Bernecky The Three Beaars — Dyalog '12

Mama Bear - Small Array Scalarization

» Mandelbrot set computation performance

» mandelbrot: Uses complex numbers

int calc(complex z, int maxdepth) {...
while(real(z)*real(z)+imag(z)*imag(z)<=4.0)...

» Complex scalars, under the covers:
complex z <+ double(2) z

real(z) < z[0]
imag(z) <+ z[1]

Robert Bernecky The Three Beaars — Dyalog '12

Mama Bear - Small Array Scalarization

» Mandelbrot set computation performance

» mandelbrot: Uses complex numbers

int calc(complex z, int maxdepth) {...
while(real(z)*real(z)+imag(z)*imag(z)<=4.0)...

» Complex scalars, under the covers:

complex z <> double(2) z
real(z) <> z[0]
imag(z) « z[1]

» mandelbrot_opt: Hand-scalarized - pair of scalars

int calc(double zr, double zi, int maxdepth) {
while(zr * zr + zi * zi <= 4.0)...

Robert Bernecky The Three Beaars — Dyalog '12

Mama Bear - Small Array Scalarization

» Execution times, with LS,LACSI,LACSO opts enabled/disabled

Test Opts -mt 1 -mt 2 -mt 3 -mt 4 -mt 5 -mt 6
mandelbrot off 1508.9s 956.0s 828.7s 676.8s 655.7s 635.2s
mandelbrot_opt off 71.8s 48.4s 35.2s 28.1s 23.0s 19.8s
mandelbrot on 69.9s 46.1s 34.6s 28.1s 23.0s 21.9s
mandelbrot_opt on 70.7s 46.7s 34.7s 28.2s 22.9s 19.6s

Robert Bernecky The Three Beaars — Dyalog '12

Mama Bear - Small Array Scalarization

» Execution times,

with LS,LACSI,LACSO opts enabled/disabled

Test Opts -mt 1 -mt 2 -mt 3 -mt 4 -mt 5 -mt 6
mandelbrot off 1508.9s 956.0s 828.7s 676.8s 655.7s 635.2s
mandelbrot_opt off 71.8s 48.4s 35.2s 28.1s 23.0s 19.8s
mandelbrot on 69.9s 46.1s 34.6s 28.1s 23.0s 21.9s
mandelbrot_opt on 70.7s 46.7s 34.7s 28.2s 22.9s 19.6s

» Lesson: No more suffering for

Robert Bernecky The Three Beaars — Dyalog '12

being elegant

Mama Bear - Small Array Scalarization

» Execution times, with LS,LACSI,LACSO opts enabled/disabled

Test Opts -mt 1 -mt 2 -mt 3 -mt 4 -mt 5 -mt 6
mandelbrot off 1508.9s 956.0s 828.7s 676.8s 655.7s 635.2s
mandelbrot_opt off 71.8s 48.4s 35.2s 28.1s 23.0s 19.8s
mandelbrot on 69.9s 46.1s 34.6s 28.1s 23.0s 21.9s
mandelbrot_opt on 70.7s 46.7s 34.7s 28.2s 22.9s 19.6s

> Lesson: No more suffering for being elegant

> Well, less suffering for being elegant. ..

Robert Bernecky The Three Beaars — Dyalog '12

GPU (CUDA) Support Without Suffering

» SaC generates CUDA code automatically: -target cuda

Robert Bernecky The Three Beaars — Dyalog '12

GPU (CUDA) Support With

» SaC generates CUDA code automatically: -target cuda

» Physics experiment
LatticeBoltzmann CUDA vs. SaC Speedups (8800GT)

70 T T T T

10 Steps‘ —— ‘ ‘ ‘

25 Steps —m—

60 | 50 Steps —o— i
[100 Steps —a— B

200 Steps

50

40 | 7 !
30 |-
20 -
10% |

0 L L L L L L L L L
256 384 512 640 768 896 1024 1152 1280 1408 1536
Problem Size

Speedup

Robert Bernecky The Three Beaars — Dyalog '12

Goldilocks - Nested Arrays in APEX/SAC

» Nested arrays are alive and living in SAC! (R. Douma)

Robert Bernecky The Three Beaars — Dyalog '12

Goldilocks - Nested Arrays in APEX/SAC

» Nested arrays are alive and living in SAC! (R. Douma)

» APL convolution kernel using EACH:
convn<«{fi<a ¢ (1Pw)con cw}
con«{fi+.x(Pfi)tavw}

Robert Bernecky The Three Beaars — Dyalog '12

Goldilocks - Nested Arrays in APEX/SAC

» Nested arrays are alive and living in SAC! (R. Douma)

» APL convolution kernel using EACH:
convn<«{fi<«a ¢ (1Pw)con cw}
con<{fi+.x(pPfi)tavw}
» SAC convolution kernel using EACH:
nested double[.] NDV;
nested double NDS;
pt=trace++(filter*0.0); NB. No overtake in SAC
z=convn (iota(shape(tr) [0]),fi,enclose NDV(pt));
convn: z=with{ (. <= iv <= .)
con(dc[iv],fi,disclose NDV(tr));
} : genarray(shape(dc),0.0);
con: matmul (fi,take(shape(fi),drop([dc],tr)))

Robert Bernecky The Three Beaars — Dyalog '12

Goldilocks - Nested Arrays in APEX/SAC

» Nested arrays are alive and living in SAC! (R. Douma)

» APL convolution kernel using EACH:
convn<«{fi<«a ¢ (1Pw)con cw}
con<{fi+.x(pPfi)tavw}
» SAC convolution kernel using EACH:-
nested double[.] NDV;
nested double NDS;
pt=trace++(filter*0.0); NB. No overtake in SAC
z=convn(iota(shape(tr) [0]),fi,enclose NDV(pt));
convn: z=with{ (. <= iv <= .)
con(dc[iv],fi,disclose NDV(tr));
} : genarray(shape(dc),0.0);
con: matmul (fi,take(shape(fi),drop([dc],tr)))

» Performance is so-so: Optimistic optimizations required

Robert Bernecky The Three Beaars — Dyalog '12

Summary and Future Work

» Status:
Bear Array | Optimizers | Serial Parallel
size speedup speedup
Baby | scalars | mature up to 1300X | none
Mama | small | developing | up to 20X enables other opts
Papa | large nearly done | up to 10X 2X-50X

Robert Bernecky The Three Beaars — Dyalog '12

Summary and Future Work

» Status:
Bear Array | Optimizers | Serial Parallel
size speedup speedup
Baby | scalars | mature up to 1300X | none
Mama | small | developing | up to 20X enables other opts
Papa | large nearly done | up to 10X 2X-50X

» All optimizations are critical for getting excellent performance

Robert Bernecky The Three Beaars — Dyalog '12

Summary and Future Work

» Status:
Bear Array | Optimizers | Serial Parallel
size speedup speedup
Baby | scalars | mature up to 1300X | none
Mama | small | developing | up to 20X enables other opts
Papa | large nearly done | up to 10X 2X-50X

» All optimizations are critical for getting excellent performance

» Array-based algorithms will win, and scale well

Robert Bernecky The Three Beaars — Dyalog '12

Summary and Future Work

» Status:
Bear Array | Optimizers | Serial Parallel
size speedup speedup
Baby | scalars | mature up to 1300X | none
Mama | small | developing | up to 20X enables other opts
Papa | large nearly done | up to 10X 2X-50X

» All optimizations are critical for getting excellent performance

» Array-based algorithms will win, and scale well

» Nested arrays: APEX, SAC both require work

Robert Bernecky The Three Beaars — Dyalog '12

Summary and Future Work

» Status:
Bear Array | Optimizers | Serial Parallel
size speedup speedup
Baby | scalars | mature up to 1300X | none
Mama | small | developing | up to 20X enables other opts
Papa | large nearly done | up to 10X 2X-50X

v

v

v

v

Array-based algorithms will win, and scale well
Nested arrays: APEX, SAC both require work

Small arrays: Needs scalarized index-vector-to-offset primitive

All optimizations are critical for getting excellent performance

Robert Bernecky The Three Beaars — Dyalog '12

Summary and Future Work

» Status:
Bear Array | Optimizers | Serial Parallel
size speedup speedup
Baby | scalars | mature up to 1300X | none
Mama | small | developing | up to 20X enables other opts
Papa | large nearly done | up to 10X 2X-50X

v

v

v

v

v

Array-based algorithms will win, and scale well
Nested arrays: APEX, SAC both require work

Small arrays: Needs scalarized index-vector-to-offset primitive

All optimizations are critical for getting excellent performance

Small arrays: Perhaps (likely!), additional work will be needed

Robert Bernecky The Three Beaars — Dyalog '12

Summary and Future Work

» Status:
Bear Array | Optimizers | Serial Parallel
size speedup speedup
Baby | scalars | mature up to 1300X | none
Mama | small | developing | up to 20X enables other opts
Papa | large nearly done | up to 10X 2X-50X
» All optimizations are critical for getting excellent performance

v

v

v

v

Array-based algorithms will win, and scale well
Nested arrays: APEX, SAC both require work

Small arrays: Needs scalarized index-vector-to-offset primitive

Small arrays: Perhaps (likely!), additional work will be needed

» And, they lived more or less happily ever after! Thank you!

Robert Bernecky The Three Beaars — Dyalog '12

