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Abstract

Functional array language compiler and interpreter designers
try to reduce the number of arrays created during application
execution, because the negative impact of arrays on
performance is so dramatic.

Just as The Three Bears had different requirements for their
own satisfaction, so do differing array shapes have different
requirements for their elimination. The problem itself is a bear:
scalar operations are the baby bear, typified here by dynamic
programming and the Floyd-Warshall algorithm; operations on
small arrays, such as numerically intense computations on
complex arrays, is the mama bear; operations on large arrays,
typified by acoustic signal processing, is the papa bear.

We compare interpreted to compiled APL performance for
several applications with different array shapes, and give an
overview of the various optimizations that enable those
speedups, in both serial and parallel contexts.
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The APEX-SaC tool chain

v

APEX: APL-to-SaC compiler (R. Bernecky)
SaC: SaC-to-C compiler (' S.B. Scholz)
APEX & SaC preserve arrays throughout compilation

v

v

v

SaC is a purely functional compiler

v

SaC represents control structures as functions

v

These characteristics are a mixed blessing. . .
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» Consider the cost to perform Z<X+Y:
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Why are arrays expensive?

» Consider the cost to perform Z<X+Y:

> (Interpreter) Parse code to find expression: 2000ps
» Increment reference counts on X,Y: 500ps

» Conformance checks (type, rank, shape) for addition: 2000ps
> Allocate temp for result from heap: 2000ps

> Initialize temp: 1000ps

> Perform actual additions: 2000ps

» Decrement reference counts on X,Y: 500ps

» Deallocate old Z, if any: 1000ps

> Assign Z<temp: 500ps

» TOTAL: 11500ps

» vs. compiled scalar code: 100ops
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Baby Bear - Eliminating Scalar Arrays in a Compiler

» Use classical static data flow analysis to find scalars
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Baby Bear - Eliminating Scalar Arrays in a Compiler

v

Use classical static data flow analysis to find scalars
Traditional optimization methods: CSE, VP, CP, etc.

Allocate scalars on stack, instead of heap

v

v

v

Generate scalar-specific code

v

This is challenging to do in an interpreter
Experimental platform: AMD 1075T 6-core CPU, 3.2GHz
(cheap ASUS M4A88T-M desktop machine)

v

v
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Baby Bear Problem: Floyd-Warshall Algorithm

z<floyd D;i;j;k
siz<1(PD)LO]
:For k :In siz
tFor 1 :In siz
tFor j :In siz
D[i1;j1«Dl[i;3jILDI[i;k1+Dl[k;31]
:EndFor
:EndFor
:EndFor

» Problem size: 3000x3000 graph
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Baby Bear Problem: Floyd-Warshall Algorithm

z<floyd D;i;j;k
siz<1(PD)[0]
:For k :In siz
:For 1 :In siz
tFor j :In siz
D[i;31«D[i;3I1LDIi;k1+Dl[k;3]
:EndFor
:EndFor
:EndFor
Problem size: 3000x3000 graph
Dyalog APL, J interpreters: one week-ish; APEX/SAC: 103sec
Dynamic programming ( string shuffle): >1000X speedup
Lesson: Interpreters dislike scalar-dominated algorithms
Lesson: Compilers are not fussy; Baby bear problem solved!
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Baby Bear Problem: Floyd-Warshall Algorithm

z<floyd D;i;j;k
siz<1(PD)LO]
:For k :In siz
tFor 1 :In siz
tFor j :In siz
D[i1;j1«Dl[i;3jILDI[i;k1+Dl[k;31]
:EndFor
:EndFor
:EndFor

Problem size: 3000x3000 graph

Dyalog APL, J interpreters: one week-ish; APEX/SAC: 103sec
Dynamic programming ( string shuffle): >1000X speedup
Lesson: Interpreters dislike scalar-dominated algorithms
Lesson: Compilers are not fussy; Baby bear problem solved!
But, no parallelism: Adding threads just makes it slower!
What about array-based solutions? It's papa bear time!
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Array-based Floyd-Warshall Algorithm

» j64-602, from J Essays ( CDC STAR APL algorithm variant)
floyd=: 3 :
("for_j. i.#y';'do.
y=. y <. j "1+ Dy
end.';'y")
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Array-based Floyd-Warshall Algorithm

» j64-602, from J Essays ( CDC STAR APL algorithm variant)
floyd=: 3 :
('"for_j. 1i.#y';'do.
y=- y <. j {1+ y'
end.';'y")
» SAC: Scholz & Bernecky ( Classic matmul variant)
inline int[.,.] floydSbsi(int[.,.] D ) {
DT = transpose(D);
res = with
(. <= [1i,7] <= )
min( D[i,j], minval( D[i] + DT[jl1));
modarray (D) ;
return( res);

}

Robert Bernecky The Three Beaars — Dyalog '12



Array-based Floyd-Warshall Algorithm

» j64-602, from J Essays ( CDC STAR APL algorithm variant)
floyd=: 3 :
('"for_j. 1i.#y';'do.
y=- y <. j {1+ y'
end.';'y")
» SAC: Scholz & Bernecky ( Classic matmul variant)
inline int[.,.] floydSbsi(int[.,.] D ) {
DT = transpose(D);
res = with
(. <= [1,7] <= )
min( D[i,j], minval( D[i] + DT[j1));
modarray (D) ;
return( res);

}

» A "with-loop” is a nested data-parallel FORALL loop
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Array-based Floyd-Warshall Algorithm Speedup

Lesson: Array-based code and optimizers are good for you

APEX/SAC (18091) vs. J Performance 2,012—07-20

Speedup

o &3 =2
8 I~ I~
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] 2 5}
= = =
2 2

Algorithm 2
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» Z =Vl + (V2 x V3)
for( i=0; i<n; i++) {
copls] - NG
for( j=0; j<m; j++) {
Z[3] = Vv1[j]1 + tmp[jl; }
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» Z =Vl + (V2 * V3)
for( i=0; i<mn; i++) {
tmp[i] = ;)
for( j=0; j<n; j++) {
Z[3] = v1[j]1 + tmp[jl; }
» Loop fusion transforms this into:
for( j=0; j<m; j++) {

20 = ity + [ )
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» Z =Vl + (V2 x V3)
for( i=0; i<mn; i++) {
tmp[i] = ;b
for( j=0; j<m; j++) {
z[j]1 = Vi[j]1 + tmpljl; }
» Loop fusion transforms this into:
for( j=0; j<m; j++) {

203 = it + [REIEEED )

» Benefit: Array-valued tmp removed (DCR)
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» Z =Vl + (V2 x V3)
for( i=0; i<mn; i++) {
tmpli] = WRLEIRVSET; )
for( j=0; j<m; j++) {
z[j1 = Vi[j]l + tmp[jl; }
» Loop fusion transforms this into:
for( j=0; j<m; j++) {

203 = it + [REIEEED )

» Benefit: Array-valued tmp removed (DCR)

» Benefit: Reduced memory subsystem traffic
» Benefit: Reduced loop overhead

> Benefit: Improved parallelism, in some compilers
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With-Loop Folding (WLF) and Algebraic With-Loop

Folding (AWLF)

» WLF (S.B. Scholz) - a generalization of loop fusion
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With-Loop Folding (WLF) and Algebraic With-Loop

Folding (AWLF)

>

WLF (S.B. Scholz) - a generalization of loop fusion
Handles Arrays of Known Shape (AKS) only

AWLF (R. Bernecky)

Handles AKS arrays & Arrays of Known Dimension (AKD)
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With-Loop Folding (WLF) and Algebraic With-Loop

Folding (AWLF)

» WLF (S.B. Scholz) - a generalization of loop fusion

» Handles Arrays of Known Shape (AKS) only

» AWLF (R. Bernecky)

» Handles AKS arrays & Arrays of Known Dimension (AKD)

» Acoustic signal processing (delta modulation):
logd«<{ 50750L50x(DIFF 0,w)+0.014+w}
DIFF<{ 1vw-"10w}
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WLF /AWLF example: Acoustic Signal Processing

» logd on 200E6-element double-precision vector

sac2c options Serial | Parallel ( -mt 6) | Speedup
elapsed time elapsed time
sec sec
APL 7.8s n/a n/a
-nowlf -O3 10.7s 5.5s 1.9X
-doawlf -O3 3.2s 0.7s 4.5X
Speedup 3.3X 7.8X 15X
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WLF /AWLF example: Acoustic Signal Processing

» logd on 200E6-element double-precision vector
» Sixteen with-loops are folded into two WLs!
» WLF/AWLEF increase available parallelism

sac2c options Serial | Parallel ( -mt 6) | Speedup
elapsed time elapsed time
sec sec
APL 7.8s n/a n/a
-nowlf -O3 10.7s 5.5s 1.9X
-doawlf -O3 3.2s 0.7s 4.5X
Speedup 3.3X 7.8X 15X
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With-Loop Scalarization (WLS)

» With-Loop Scalarization: ( C. Grelck, S.B. Scholz, K.
Trojahner)
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With-Loop Scalarization (WLS)

» With-Loop Scalarization: ( C. Grelck, S.B. Scholz, K.
Trojahner)

» Operates on nested-WLs in which inner loop creates
non-scalar cells
» WLS to merge loop-nest pairs, forming a single WL
A = with ([0] <= iv < [4]) {
B = with ([0] <= jv < [4])
genarray( [4], iv[0] + 2 * jv[0]);

genarray( [4], B);
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» With-Loop Scalarization: ( C. Grelck, S.B. Scholz, K.
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» Operates on nested-WLs in which inner loop creates
non-scalar cells
» WLS to merge loop-nest pairs, forming a single WL
A = with ([0] <= iv < [4]) {
B = with ([0] <= jv < [4])
genarray( [4], iv[0] + 2 * jv[0]);

genarray( [4], B);

» WLS transforms this into:
A = with ([0,0] <= iv < [4,4])
genarray( [4,4], iv[0] + 2 * iv[1]);
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With-Loop Scalarization (WLS)

» With-Loop Scalarization: ( C. Grelck, S.B. Scholz, K.
Trojahner)

» Operates on nested-WLs in which inner loop creates
non-scalar cells

» WLS to merge loop-nest pairs, forming a single WL
A = with ([0] <= iv < [4]) {
B = with ([0] <= jv < [4])
genarray( [4], iv[0] + 2 * jv[0]);

genarray( [4], B);

» WLS transforms this into:
A = with ([0,0] <= iv < [4,4])
genarray( [4,4], iv[0] + 2 * iv[1]);

» Mandatory for good performance: array-valued temps removed
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WLF/AWLF /WLS example: Poisson 2-D Relaxation Kernel

From Sven-Bodo Scholz: With-Loop-Folding in Sac
A good argument for Ken lverson’s mask verb!

z<relax A;m;n. . .

m<(PA)[0]

n<(PA)[1]

B<((16A)+( 16A)+(10A)+("10A) ) +4L
upperA<(1,n)+A
lowerA<((m-1),0)+A

leftA«<1l 0+((m-1),1)4A
rightaA«<((m-2),1)+(1,n-1)+A
innerB<«((m-2),n-2)%1 1B
middle<«leftA, innerB,rightA
z<«upperAymiddleylowerA
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Poisson 2-D Relaxation: Multi-thread, Various Grid Sizes

» AWLF, aided by WLS, folds relax function into 1 loop!
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Poisson 2-D Relaxation: Multi-thread, Various Grid Sizes

» AWLF, aided by WLS, folds relax function into 1 loop!
» 20K iterations, 250x250 grid: Dyalog APL: CPU time = 47.4s
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Poisson 2-D Relaxation: Multi-thread, Various Grid Sizes

>

AWLF, aided by WLS, folds relax function into 1 loop!

20K iterations, 250x250 grid: Dyalog APL: CPU time = 47.4s
APEX/SAC 18091, single-thread: CPU time = 3.65s
APEX/SAC 18091: multi-threaded (no source code changes!)

v

v

v
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Poisson 2-D Relaxation: Multi-thread, Various Grid Sizes

APEX/SAC (18091) vs. Dyalog APL 13.0 Performance 2,012-07-19

70x T
6—core AMD Phenom II X6 1075T, 3. ZGHSZ 485

60X [ 2038 - - - T 33
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Speedup
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00x500,20K
10Kx10K,100

Problem size,Tteration count

Figure: APEX vs. APL CPU time performance
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Poisson 2-D Relaxation: Memory footprint

» Why poor speedup on 10Kx10K test?
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Poisson 2-D Relaxation: Memory footprint

» Why poor speedup on 10Kx10K test?

» Dyalog APL 13.0, 10Kx10K grid: 8.5GB footprint

» APEX/SAC 18091: 10Kx10K grid: 3.4GB footprint
» Memory subsystem bandwidth: 4464MB/s

» Grid is 800MB — 5 writes of grid to/from memory/s

» Therefore, speedup is eventually memory-limited on cheapo
system

» Scholz sees linear speedup on 48-core system
> Lesson: High memory bandwidth is good for you.

» Lesson: Array optimizations are VERY good for you.
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Mama Bear Motivation

Why is interpreted APL faster than compiled code for some tests?

APL vs. APEX CPU Time Performance (2,012-09-15)

Robert Bernecky

Benchmark name

The Three Beaars — Dyalog '12
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Some reasons for poor performance of compiled SAC code:
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Mama Bear Motivation

Some reasons for poor performance of compiled SAC code:

» Index vector generation for indexed assign

» Shape vector generation for variable result shapes
» Generation of small arrays, e.g., complex scalars
» No SaC FOR-loop analog to with-loop

Robert Bernecky The Three Beaars — Dyalog '12
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» Replace small arrays by their scalarized form
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Mama Bear - Small Array Scalarization

v

Replace small arrays by their scalarized form
Optimization: Primitive Function Unrolling (Classic)

v

Optimization: Index Vector Elimination (IVE) ( sacdev)
2-16X speedup observed

Optimizations: LS, LACSI, LACSO (S.B. Scholz, R. Bernecky)

v

v

Robert Bernecky The Three Beaars — Dyalog '12



Mama Bear - Small Array Scalarization

» Mandelbrot set computation performance

Robert Bernecky The Three Beaars — Dyalog '12



Mama Bear - Small Array Scalarization

» Mandelbrot set computation performance

» mandelbrot: Uses complex numbers

int calc( complex z, int maxdepth) {...
while(real(z)*real(z)+imag(z)*imag(z)<=4.0)...

Robert Bernecky The Three Beaars — Dyalog '12



Mama Bear - Small Array Scalarization

» Mandelbrot set computation performance

» mandelbrot: Uses complex numbers

int calc( complex z, int maxdepth) {...
while(real(z)*real(z)+imag(z)*imag(z)<=4.0)...

» Complex scalars, under the covers:
complex z <+ double(2) z

real(z) < z[0]
imag(z) <+ z[1]
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Mama Bear - Small Array Scalarization

» Mandelbrot set computation performance

» mandelbrot: Uses complex numbers

int calc( complex z, int maxdepth) {...
while(real(z)*real(z)+imag(z)*imag(z)<=4.0)...

» Complex scalars, under the covers:

complex z <> double(2) z
real(z) <> z[0]
imag(z) « z[1]

» mandelbrot_opt: Hand-scalarized - pair of scalars

int calc( double zr, double zi, int maxdepth) {
while( zr * zr + zi * zi <= 4.0)...
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Mama Bear - Small Array Scalarization

» Execution times, with LS,LACSI,LACSO opts enabled/disabled

Test Opts -mt 1 -mt 2 -mt 3 -mt 4 -mt 5 -mt 6
mandelbrot off 1508.9s 956.0s 828.7s 676.8s 655.7s 635.2s
mandelbrot_opt off 71.8s 48.4s 35.2s 28.1s 23.0s 19.8s
mandelbrot on 69.9s 46.1s 34.6s 28.1s 23.0s 21.9s
mandelbrot_opt on 70.7s 46.7s 34.7s 28.2s 22.9s 19.6s
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Mama Bear - Small Array Scalarization

» Execution times, with LS,LACSI,LACSO opts enabled/disabled

Test Opts -mt 1 -mt 2 -mt 3 -mt 4 -mt 5 -mt 6
mandelbrot off 1508.9s 956.0s 828.7s 676.8s 655.7s 635.2s
mandelbrot_opt off 71.8s 48.4s 35.2s 28.1s 23.0s 19.8s
mandelbrot on 69.9s 46.1s 34.6s 28.1s 23.0s 21.9s
mandelbrot_opt on 70.7s 46.7s 34.7s 28.2s 22.9s 19.6s

> Lesson: No more suffering for being elegant

> Well, less suffering for being elegant. ..
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GPU (CUDA) Support Without Suffering

» SaC generates CUDA code automatically: -target cuda
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GPU (CUDA) Support With

» SaC generates CUDA code automatically: -target cuda

» Physics experiment
LatticeBoltzmann CUDA vs. SaC Speedups (8800GT)
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Goldilocks - Nested Arrays in APEX/SAC
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Robert Bernecky The Three Beaars — Dyalog '12



Goldilocks - Nested Arrays in APEX/SAC

» Nested arrays are alive and living in SAC! (R. Douma)

» APL convolution kernel using EACH:
convn<«{fi<a ¢ (1Pw)con cw}
con«{fi+.x(Pfi)tavw}

Robert Bernecky The Three Beaars — Dyalog '12



Goldilocks - Nested Arrays in APEX/SAC

» Nested arrays are alive and living in SAC! (R. Douma)

» APL convolution kernel using EACH:
convn<«{fi<«a ¢ (1Pw)con cw}
con<{fi+.x(pPfi)tavw}
» SAC convolution kernel using EACH:
nested double[.] NDV;
nested double NDS;
pt=trace++(filter*0.0); NB. No overtake in SAC
z=convn (iota(shape(tr) [0]),fi,enclose NDV(pt));
convn: z=with{ ( . <= iv <= .)
con(dc[iv],fi,disclose NDV(tr));
} : genarray(shape(dc),0.0);
con: matmul (fi,take(shape(fi),drop([dc],tr)))
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Goldilocks - Nested Arrays in APEX/SAC

» Nested arrays are alive and living in SAC! (R. Douma)

» APL convolution kernel using EACH:
convn<«{fi<«a ¢ (1Pw)con cw}
con<{fi+.x(pPfi)tavw}
» SAC convolution kernel using EACH:-
nested double[.] NDV;
nested double NDS;
pt=trace++(filter*0.0); NB. No overtake in SAC
z=convn(iota(shape(tr) [0]),fi,enclose NDV(pt));
convn: z=with{ ( . <= iv <= .)
con(dc[iv],fi,disclose NDV(tr));
} : genarray(shape(dc),0.0);
con: matmul (fi,take(shape(fi),drop([dc],tr)))

» Performance is so-so: Optimistic optimizations required
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Summary and Future Work

» Status:
Bear Array | Optimizers | Serial Parallel
size speedup speedup
Baby | scalars | mature up to 1300X | none
Mama | small | developing | up to 20X enables other opts
Papa | large nearly done | up to 10X 2X-50X
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Summary and Future Work

» Status:
Bear Array | Optimizers | Serial Parallel
size speedup speedup
Baby | scalars | mature up to 1300X | none
Mama | small | developing | up to 20X enables other opts
Papa | large nearly done | up to 10X 2X-50X
» All optimizations are critical for getting excellent performance

v

v

v

v

Array-based algorithms will win, and scale well
Nested arrays: APEX, SAC both require work

Small arrays: Needs scalarized index-vector-to-offset primitive

Small arrays: Perhaps (likely!), additional work will be needed

» And, they lived more or less happily ever after! Thank you!
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