
V.M. GLUSHKOV INSTITUTE OF CYBERNETICS
OF NATIONAL ACADEMY OF SCIENCE OF UKRAINE

TERESHCHENKO ANDRIY

OPTIMIZATION OF
PARALLEL MULTI-DIGIT ALGORITHMS

Senior developer, Simcorp Ukraine,
Front Office (Ukraine)

Ph.D. Physical and Mathematical sciences
(theoretical basis of informatics and
cybernetics)

Dyalog'12 Conference, 17 October, Elsinore

AGENDA

 Education, articles, conferences

 Definitions, terms

 Scope of using multi-digit operations (arithmetic)

 APL advantages

 Scalable Data-Parallel Computing Using GPUs

 Formula 80/20. Multi-digit multiplication based on FFT (Fast Fourier Transform)

 Multi-digit multiplication (example 1 of optimization). Standard and diagonal methods

 Multi-digit multiplication (example 2 of optimization). Karatsuba-Ofman method.

 Example of multiplication 4-digit numbers based on Karatsuba-Ofman method.

 Multi-digit cyclic convolution

 Multiplication algorithm based on multi-digit cyclic convolution

 Computation of convolution length of N=2n based on method Pitassi-Devisa

 Analysis of algorithm based on fast Haar transform

 Finding approach for Walsh transform calculation

 Computation scheme of convolution length of 8

 APL is a tool to find approach

 Improvement in computational scheme

 Final computation scheme of convolution length of 8

 APL describes parallel models

 Analysis of FFT algorithm

 References

EDUCATION, ARTICLES, CONFERENCES

1991-1995: Sumy state university, faculty – automation of manufacture, specialty –
industrial electronics.
2004-2007: V.M. Glushkov Institute of Cybernetics
2010 Thesis “The fast proceeding algorithms of multi-digit arithmetic”.

Languages: APL, Assembler, FORTRAN, Pascal, Perl, C, FoxPro, Clipper

Assembler, C – fast execution
FoxPro, Clipper – database calls
Perl – text files (like HTML)
APL, FORTRAN, MathCad – describing mathematical models
APL (CUDA C, OpenCl library) – describing parallel models

Articles:

Control systems and machines: 2006 № 3, 4
Computer mathematic: 2006 № 3, 4; 2008 № 1; 2010 № 1
Artificial intellect: 2006 № 3; 2009 № 1; 2010; 2011; 2012 № 3
Problems of control and informatics: 2010 № 2

Conferences (with appearing):

Young scientists: 2005 (Kiev, KPI)
Artificial intellect (international): 2006, 2008, 2010, 2012 (Crymya, Kaciveli)
Optimization of calculations: 2007, 2009, 2011 (Crymya, Kaciveli)

DEFINITIONS, TERMS

Optimization – method that gives possibility to reduce complexity (the

number of operations executed by one processor) in such way that original
algorithm executed faster on a computer. Parallel model of computation is taken
into account as well.

Multi-digit number is value that is allocated in more than one byte (16, 32,

64,128-bit word). Operands of single and double precision operations are
considered as one-digit number. High precision numbers like:

1,234567890123456789012345678901234567890123456789…E324…

is part of multi-digit numbers.

Arithmetic – multi-digit operations: multiplication, addition, subtraction,
convolution, correlation, etc. Main focus is on convolution. There will be giving
some theory to describe convolution operation as simple as possible.

Algorithm… The optimization was needed from the moment when the first

algorithm was built.

SCOPE OF USING MULTI-DIGIT OPERATIONS (ARITHMETIC)

1. Two-key cryptography:

 Encryption/decryption;

 Generation EDS;

 Verifying EDS;

 Authentication;

 Cryptographic protocols.

2. High precision computations:

 Analysis of error of rounding.

3. Modeling of processes:

 Physical, chemical (biochemical), aerodynamics, hydrodynamics,
astronomic computations.

APL ADVANTAGES

 APL is cool

 Code is very close to mathematical formulas

 Reduces time to transform mathematical models to code and vice versa

 Shows complicated models in simple way

 Analysis complicated algorithms

 Describing parallel algorithms

 Pen and paper are not needed due to nature of APL

SCALABLE DATA-PARALLEL COMPUTING USING GPUs

Driven by the insatiable market demand for real-time, high-definition graphics, the
programmable graphics processing unit (GPU) has evolved into a highly parallel,
multithreaded, many-core processor with tremendous computational horsepower
and very high memory bandwidth.

The floating-point operations per second for CPU and GPU

GPU is especially well-suited to address problems that can be expressed as
data-parallel computations to speed up processing large data sets (SIMD - Single
Instruction, Multiple Data). The effort in general-purpose computing on the GPU
(GPGPU) has positioned the GPU as a compelling alternative to traditional
microprocessors in high-performance computer systems of the future.

The GPU devotes more transistors to data processing

Amdahl’s law specifies the maximum speed-up   NPP
S




1

1
, where P is the

fraction of the total serial execution time taken by the portion of code that can be
parallelized and N is the number of processors over which the parallel portion of
the code runs.

Formula 80/20
Multi-digit multiplication based on FFT (Fast Fourier Transform)

Language Time for mathematical model Time for development
Assembler 20% 80%

Pascal 20% 80%

APL 80% 20%

Turbo assembler v.2.71
Furie.asm
There are more than 1000 lines
(28 pages)

Turbo Pascal v.7.1
m_new2l9.pas
There are more than 500 lines
(14 pages)

Dyalog APL/W v.10.1.1
FFTMainF2
There are more than 250 lines
(7 pages)

There are screenshots of the same computations in Pascal and APL:

APL takes much less space (lines) to develop the same computation.
APL code looks:

 compact;

 closer to mathematical model;

 easier to understand, analyze and, as a result, improve.
Note. Using complex arithmetic from Dyalog APL/W v.12 the APL code would look
much simpler.

MULTI-DIGIT MULTIPLICATION (EXAMPLE 1 OF OPTIMISATION).
STANDARD AND DIAGONAL METHODS

Consider computation:

i
N

i

i

i
N

i

i

i
N

i

iN rvuR  222
12

0

1

0

1

0

2 




























 ,

where NU , NV , NR2 – N - and N2 -digit positive integers:
i

N

i

iNNN uuuuU 2)...(
1

0

021 




  ,

i
N

i

iNNN vvvvV 2)...(
1

0

021 




  ,
i

N

i

iNNN rrrrR 2)...(
12

0

022122 




  ,  – number of bits in one word ( =16,

24, 32 or 64 bits),
2,,0  iii rvu . The complexity is 2N one-word multiplications.

 u3 u2 u1 u1

 v3 v2 v1 v1

 u3v0 u2v0 u1v0 u0v0

 u3v1 u2v1 u1v1 u0v1

 u3v2 u2v2 u1v2 u0v2

 u3v3 u2v3 u1v3 u0v3

⌈
r7

r6 r5 r4 r3 r2 r1 r0

Standard method of multiplication of two 4-digit

numbers (NN 34 2  memory reads needed)

Diagonal scheme of multiplication of two 4-digit

numbers (NN 22 2  memory reads needed)

Each diagonal is calculated on registers that reduces the number of memory reads. It gives
possibility to reduce performance twice and this kind of optimization is not considered.

00vu

03vu
23vu 33vu

02vu 12vu 22vu 32vu

01vu 11vu
21vu 31vu

10vu 20vu 30vu

13vu

MULTI-DIGIT MULTIPLICATION (EXAMPLE 2 OF OPTIMISATION)
KARATSUBA-OFMAN METHOD

It gives possibility to reduce complexity.

Let`s consider NU 2 and NV2 – positive integers, each of them is allocated in N2  -bit

words. The numbers NU 2 and NV2 could be shown as:

)(2)(222 N

N

NN ULUHU  
,)(2)(222 N

N

NN VLVHV  
,

where operators)(2NUH ,)(2NVH and)(2NUL ,)(2NVL gives high and low parts of NU 2 , NV2 ,

respectively.

If abbreviations NX 2 ,)(2NUHHU  ,)(2NVHHV  ,)(2NULLU  ,)(2NVLLV  are used,

than multiplication NN VU 22  could be shown as:

)()())(2)(())(2)((222222 LVXHVLUXHUVLVHULUHVU N

N

NN

N

NNN



LVLUXLVHVLUHULVLUHVHUXHVHU ))()((2

or
))(2)(())(2)((222222 N

N

NN

N

NNN VLVHULUHVU 

LVLUXLVLUHVHULVHVLUHUXHVHU ))()(2
.

There are three N -word operations of multiplications (HVHU  and LVLU  are repeated
twice) instead of four N -word operations using standard method. 25% of multiplications are
reduced using one level of splitting N2 -word number into two N -word numbers. Using
splitting on more levels reduces complexity more.

If nN 2 than it is needed n3 one-word simple multiplications but that`s required more














1

0 2

3
4

n

i

n

N additions (and subtractions). This method has a limit of using due to additional

operations needed for recursive calls.

EXAMPLE OF MULTIPLICATION 4-DIGIT NUMBERS BASED ON
KARATSUBA-OFMAN METHOD

)()())(2)(())(2)((222222 LVXHVLUXHUVLVHULUHVU N

N

NN

N

NNN



LVLUXLVHVLUHULVLUHVHUXHVHU ))()((2

22X ,)1,1,1,1(VU
)1,1( LVLUHVHU

 1 1 1 1

 1 1 1 1

 1 1 1 1

 1 1 1 1

 1 1 1 1

 1 1 1 1

0 1 2 3 4 3 2 1

Standard method of multiplication of

 two 4-digit numbers

 1 1

 1 1

 1 1

 1 1

0 1 2 1

Standard method of multiplication of
 numbers LVLUHVHU 

 0 1 2 1

 0 1 2 1

 0 1 2 1

0 1 2 1

0 1 2 3 4 3 2 1

Total sum of subtotals

The results are the same using different methods: standard and Karatsuba-Ofman.
Using Karatsuba method it is enough to compute only once 2-digit numbers instead of

4-digit numbers due to structure of numbers (1,1,1,1). Karatsuba method works in the rest
cases.

MULTI-DIGIT CYCLIC CONVOLUTION
Operation of cyclic convolution length N of two sequences NX и NY :

NNN YXR  ,),...,(10  NN rrR , 






1

0

N

p
kppk

N

yxr , 1,0  Nk .

Cyclic convolution length 4N could be shown as:



























































3

2

1

0

0321

1032

2103

3210

3

2

1

0

y

y

y

y

xxxx

xxxx

xxxx

xxxx

r

r

r

r

,

231201303

130231202

033221101

332211000

yxyxyxyxr

yxyxyxyxr

yxyxyxyxr

yxyxyxyxr









,

3210

21033

10322

03211

32100

rrrr

yyyyx

yyyyx

yyyyx

yyyyx

,

3210

01233

30122

23011

12300

rrrr

xxxxy

xxxxy

xxxxy

xxxxy

.

where 16 one-word multiplications are needed using standard approach.

There are two approaches to get NR . The approach on the right is more convenient to

describe and make an experiment to find simpler view:
   321032100 yyyyxxxxa  ,

   321032101 yyyyxxxxa  ,

   321032102 yyyyxxxxa  ,

   321032103 yyyyxxxxa  ,

 32100 41 aaaar  ,

  taaaar  32101 41 ,

 32102 41 aaaar  ,

  taaaar  32103 41 .

4444
4

1
TAWR  ,)()(44444 YWXWA  ,

032123012031)()(yxyxyxyxyyxxt  ,

,

3

2

1

0

4





















x

x

x

x

X

,

3

2

1

0

4





















y

y

y

y

Y

,

1111

1111

1111

1111

4
























W

.

0

0

4
























t

t
T

It looks like APL style due of using vectors and arrays.

It will be shown that APL gives possibility to analyze, develop and improve more
complicated algorithms.

MULTIPLICATION ALGORITHM BASED ON
MULTI-DIGIT CYCLIC CONVOLUTION

Multiplication of two multi-digit values),,,(32104 uuuuU  ,),,,(32104 vvvvV  length of 4 based on

cyclic convolution),,,,0,0,0,0()0,0,0,0,,,,(012332108 vvvvuuuuR  could be shown like:

76543210

1230

2301

3012

0123

01233

01232

01231

01230

00000

00000

00000

00000

0000

0000

0000

0000

rrrrrrrr

vvvv

vvvv

vvvv

vvvv

vvvvu

vvvvu

vvvvu

vvvvu

76543210

01233

01232

01231

01230

000000000

000000000

000000000

000000000

0000

0000

0000

0000

rrrrrrrr

vvvvu

vvvvu

vvvvu

vvvvu

Multiplication of two 4-digit values
based on convolution

Multiplication of two 4-digit values
Based on convolution with zero lines

76543210

01233

01232

01231

01230

rrrrrrrr

vvvvu

vvvvu

vvvvu

vvvvu

01234567

03132333

02122232

01112131

00102030

0123

0123

rrrrrrrr

vuvuvuvu

vuvuvuvu

vuvuvuvu

vuvuvuvu

uvvv

uuuu

Multiplication of two 4-digit values
based on convolution without zero lines

Multiplication of based on standard
Method

COMPUTATION OF CONVOLUTION LENGTH OF N=2
n
 BASED ON METHOD

PITASSI – DEVISA

Input and output sequences of convolution NNN YXR  ,
nN 2 , are linked:

)()()()()(NNNNN YOXOYEXERE  ,))(()()()()(NNNNN YEUXOYOXERO  .





















6

4

2

0

8)(

x

x

x

x

XE
,





















7

5

3

1

8)(

x

x

x

x

XO
,





















0

3

2

1

4)(

y

y

y

y

YU
,





















2

1

0

3

4)(

y

y

y

y

YD
.

)(21)(22 NNN SARE  ,

222)(21)(NNNN CSARO  .

))()(())()((2 NNNNN YOYEXOXEA  ,

))()(())()((2 NNNNN YOYEXOXES  ,

))())((()(2 NNNN YEYEUXOC  .

76543210

012345677

701234566

670123455

567012344

456701233

345670122

234567011

123456700

rrrrrrrr

xxxxxxxxy

xxxxxxxxy

xxxxxxxxy

xxxxxxxxy

xxxxxxxxy

xxxxxxxxy

xxxxxxxxy

xxxxxxxxy

)()(

)(

)(

75316420

0246

6024

4602

2460

1357

7135

5713

3571

7

5

3

1

7135

5713

3571

1357

0246

6024

4602

2460

6

4

2

0

NN

N

N

RO

rrrr

RE

rrrr

xxxx

xxxx

xxxx

xxxx

xxxx

xxxx

xxxx

xxxx

y

y

y

y

YO

xxxx

xxxx

xxxx

xxxx

xxxx

xxxx

xxxx

xxxx

y

y

y

y

YE

Standard method of computation of convolution
length of N=8

Parisection method of computation of convolution
length of N=8

 ANALYSIS OF ALGORITHM BASED ON FAST HAAR TRANSFORM (XX3FHAARXY)

The user should adopt
for the language.
APL could be easily adopted
for the user`s needs.

s0

s1

s2

s3

s4

s5

s6

s7

s8

s9

s10

s11

s12

s13

x0

x1

x2

x3

x4

x5

x6

x7

y0

y1

y2

y3

y4

y5

y6

y7

s0

s1

s2

s3

s4

s5

s6

s7

s8

s9

s10

s11

s12

s13

r0

r1

r2

r3

r4

r5

r6

r7

x

y

x

y

x

y

x+y

x-y

x+1/2y

FINDING APPROACH FOR WALSH TRANSFORM CALCULATION (XX3FWALSH5/6G)

Developing algorithm based on Walsh transform was possible due to using APL as
approach to analyze, check results and improve code and mathematical model.

Sorting is needed to get data looked like
transform

That`s better to use FWT (instead of Haar transform) as there are a lot of common parts

It was iterative process where on each iteration the mathematical model was improved
using APL and APL code was improved using better mathematical approach.

Reducing the number of inverse FWTs (xx3fwalsh6kmOp8).

On initial phase there were used two different fast transforms (Walsh and Hadamar)
and the link between both transforms (calcHadamar2Walsh).

From developer point of view that`s better to have common
subfunctions instead of separate independent functions.
The developer need to deliver functions for both fast
transforms (Walsh and Hadamar).



























































1111

1111

1111

1111

1111

1111

1111

1111

1111

1111

1111

1111

1111

1111

1111

1111

CT



























































1111

1111

1111

1111

1111

1111

1111

1111

1111

1111

1111

1111

1111

1111

1111

1111

H

 COMPUTATIONAL SCHEME OF CONVOLUTION LENGTH OF 8

There are a lot of FWTs different lengths across scheme.

s0

s1

s2

s3

s4

s5

s6

s7

s8

s9

s10

s11

sadd0

sadd1

sadd2

y0

y1

y2

y3

y4

y5

y6

y7

 B W W

 FWT

 FWT

x0

x1

x2

x3

x4

x5

x6

x7

FWT

 1

 8

r0

r1

r2

r3

r4

r5

r6

r7

s0

s1

s2

s3

s4

s5

s6

s7

s8

s9

s10

s11

sadd0

sadd1

sadd2

FWT

FWT

FWT

APL IS A TOOL TO FIND APROACH

The approach is proved afterwards using mathematical formulas (xx3fwalsh6).

The number of FWTs different length defines complexity of the scheme.

IMPROVEMENT IN COMPUTATIONAL SCHEME
The old one:

The new one:

There are more coefficients like (2, 1/2, 1/8, etc) but there is only one FWT.
Coefficients (2, 1/2, 1/8, etc) don`t add more multiplications as they could be replaced

with bit-shift operations.

 1

 8

r0

r1

r2

r3

r4

r5

r6

r7

s0

s1

s2

s3

s4

s5

s6

s7

s8

s9

s10

s11

sadd0

sadd1

sadd2

FWT

FWT

FWT

 2

 2

 2

s0

s1

s2

s3

s4

s5

s6

s7

s8

s9

s10

s11

sadd0

sadd1

sadd2

 1/2

 1

 2

FWT

 1

 8

r0

r1

r2

r3

r4

r5

r6

r7

FINAL COMPUTATIONAL SCHEME OF CONVOLUTION LENGTH OF 8

Resulted scheme is applicable for parallel computational model as there are a lot of
the same blocks. APL is useful tool to get parallel computational model as a result.

 1

 2

FWT

 1

 8

r0

r1

r2

r3

r4

r5

r6

r7

 2

 2

 2

s0

s1

s2

s3

s4

s5

s6

s7

s8

s9

s10

s11

sadd0

sadd1

sadd2

 1/2

s0

s1

s2

s3

s4

s5

s6

s7

s8

s9

s10

s11

sadd0

sadd1

sadd2

y0

y1

y2

y3

y4

y5

y6

y7

 B W W

 FWT

 FWT

x0

x1

x2

x3

x4

x5

x6

x7

FWT

ANALYSIS OF FFT ALGORITHM

Algorithm (using Pascal) looks overcomplicated taking into account there are complex
numbers. Some part of the code commented as there was attempt to improve algorithm
making changes in the code. It takes time.

It was worth to spent time on rewriting Pascal code and improving algorithm analyzing
APL code. The complicated algorithm looks simpler using APL code.

There are two functions similar functions FFTUnpackF2 and FFTPackF2

Changing order of FFTPackF2 and FFTComplexF2 gives possibility to use common function for
both FFTUnpackF2 and FFTPackF2

APL DESCRIBES PARALLEL MODELS

ALGORITHM. Computation of multi-digit convolution

length of
nN 2 based on FWT and parallel model.

Input: NX , NY – sequences length of
nN 2 , 3n .

Output: NNN YXR  – convolution of NX , NY .

Step 0. Initialization.

NN
XXX n 


))((02 ; NN

YYY n 


))((02 .

Step 1. FWT of initial section

))((0NX .))(())((00 NNN XWX  .

Step 2. DWT of the rest sections of X as linear

combinations of sections of X .

),(2MVXX  ,))(())((2 jMjMM XHXLV  ,

1,0  Tj ,
inM  2 ,

iT 3 , 3,0  ni .

Step 3. DWT of the vector Y (except two last iterations).

Step 3a. For i from 0 to 3n

Step 3b.),(2MVYY  ,)())((2 MMM ZEZEUV  ,

Step 3c. 









)))(((

)))(((
))((

jM

jM

jM YHB

YLB
Y ,))(())((MjM ZWBY  ,

Step 3d.))((jMM YZ  , 1,0  Tj ,
inM  2 ,

iT 3 .

Step 3e. End For i .
Step 4. Last two iteration of FWT.

))))(((())((44 jj YWBWY  , 13,0 2  nj ……

It is very important to have a balance between number of steps (iterations) and number of basic
operations on each step to build fast algorithm using parallel model.

REFERENCES

 Rivest R.A., Shamir A., Adleman L. A method for obtaining digital signatures and public-key
cryptosysteme / ASS. Comput. Math., Vol. 21, № 2, 1978. – P. 120–126.

 Karatsuba A.A., Ofman U.P. Multi-digit multiplication using automats / DAS USSR, 145 (1962), P.
293–294 [in Russian].

 Pitassi D.A. Fast convolution using the Walsh transform / Applicat. Walsh Functions. – 1971. –
April. – P. 130–133.

 Davis W.F. A class of efficient convolution algorithms / Applicat. Walsh Functions. – 1972. –
March. – P. 318–329.

 Sadihov R. H., Sharenkov A.V. Fast convolution algorithms / Automatica, № 3, 1986. – P. 71–75.

