
V.M. GLUSHKOV INSTITUTE OF CYBERNETICS 
OF NATIONAL ACADEMY OF SCIENCE OF UKRAINE 

 
 

TERESHCHENKO ANDRIY 
 
 
 

OPTIMIZATION OF  
PARALLEL MULTI-DIGIT ALGORITHMS 

 

 
Senior developer, Simcorp Ukraine, 
Front Office (Ukraine) 
 
Ph.D. Physical and Mathematical sciences 
(theoretical basis of informatics and 
cybernetics) 

 
 

Dyalog'12 Conference, 17 October, Elsinore 



AGENDA 
 

 Education, articles, conferences 

 Definitions, terms 

 Scope of using multi-digit operations (arithmetic) 

 APL advantages 

 Scalable Data-Parallel Computing Using GPUs 

 Formula 80/20. Multi-digit multiplication based on FFT (Fast Fourier Transform) 

 Multi-digit multiplication (example 1 of optimization). Standard and diagonal methods 

 Multi-digit multiplication (example 2 of optimization). Karatsuba-Ofman method. 

 Example of multiplication 4-digit numbers based on Karatsuba-Ofman method. 

 Multi-digit cyclic convolution 

 Multiplication algorithm based on multi-digit cyclic convolution 

 Computation of convolution length of N=2n based on method Pitassi-Devisa 

 Analysis of algorithm based on fast Haar transform 

 Finding approach for Walsh transform calculation 

 Computation scheme of convolution length of 8 

 APL is a tool to find approach 

 Improvement in computational scheme 

 Final computation scheme of convolution length of 8 

 APL describes parallel models 

 Analysis of FFT algorithm 

 References 



EDUCATION, ARTICLES, CONFERENCES 

 
1991-1995: Sumy state university, faculty – automation of manufacture, specialty – 
industrial electronics. 
2004-2007: V.M. Glushkov Institute of Cybernetics 
2010 Thesis “The fast proceeding algorithms of multi-digit arithmetic”. 
 
Languages: APL, Assembler, FORTRAN, Pascal, Perl, C, FoxPro, Clipper 

Assembler, C – fast execution 
FoxPro, Clipper – database calls 
Perl – text files (like HTML) 
APL, FORTRAN, MathCad – describing mathematical models 
APL (CUDA C, OpenCl library) – describing parallel models 
 
Articles: 

Control systems and machines: 2006 № 3, 4 
Computer mathematic:  2006 № 3, 4; 2008 № 1; 2010 № 1 
Artificial intellect: 2006 № 3; 2009 № 1; 2010; 2011; 2012 № 3 
Problems of control and informatics: 2010 № 2 
 
Conferences (with appearing): 

Young scientists: 2005 (Kiev, KPI)  
Artificial intellect (international): 2006, 2008, 2010, 2012 (Crymya, Kaciveli) 
Optimization of calculations: 2007, 2009, 2011 (Crymya, Kaciveli) 
 



DEFINITIONS, TERMS 
 
 
Optimization – method that gives possibility to reduce complexity (the 

number of operations executed by one processor) in such way that original 
algorithm executed faster on a computer. Parallel model of computation is taken 
into account as well. 

 
Multi-digit number is value that is allocated in more than one byte (16, 32, 

64,128-bit word). Operands of single and double precision operations are 
considered as one-digit number.  High precision numbers like: 

 
1,234567890123456789012345678901234567890123456789…E324… 

 
is part of multi-digit numbers. 
 

Arithmetic – multi-digit operations: multiplication, addition, subtraction, 
convolution, correlation, etc. Main focus is on convolution. There will be giving 
some theory to describe convolution operation as simple as possible. 

 
Algorithm… The optimization was needed from the moment when the first 

algorithm was built. 



SCOPE OF USING MULTI-DIGIT OPERATIONS (ARITHMETIC) 
 

1. Two-key cryptography: 

 Encryption/decryption; 

 Generation EDS; 

 Verifying EDS; 

 Authentication; 

 Cryptographic protocols. 

2. High precision computations: 

 Analysis of error of rounding. 

3. Modeling of processes: 

 Physical, chemical (biochemical), aerodynamics, hydrodynamics, 
astronomic computations. 



APL ADVANTAGES 

 
 APL is cool 

 Code is very close to mathematical formulas 

 Reduces time to transform mathematical models to code and vice versa 

 Shows complicated models in simple way 

 Analysis complicated algorithms 

 Describing parallel algorithms 

 Pen and paper are not needed due to nature of APL 



SCALABLE DATA-PARALLEL COMPUTING USING GPUs 

Driven by the insatiable market demand for real-time, high-definition graphics, the 
programmable graphics processing unit (GPU) has evolved into a highly parallel, 
multithreaded, many-core processor with tremendous computational horsepower 
and very high memory bandwidth.  

 

The floating-point operations per second for CPU and GPU 
 



GPU is especially well-suited to address problems that can be expressed as 
data-parallel computations to speed up processing large data sets (SIMD - Single 
Instruction, Multiple Data). The effort in general-purpose computing on the GPU 
(GPGPU) has positioned the GPU as a compelling alternative to traditional 
microprocessors in high-performance computer systems of the future.  

 

The GPU devotes more transistors to data processing 

Amdahl’s law specifies the maximum speed-up   NPP
S




1

1
, where P  is the 

fraction of the total serial execution time taken by the portion of code that can be 
parallelized and N  is the number of processors over which the parallel portion of 
the code runs. 



Formula 80/20 
Multi-digit multiplication based on FFT (Fast Fourier Transform) 

 
 

Language Time for mathematical model Time for development 
Assembler 20% 80% 

Pascal 20% 80% 

APL 80% 20% 
 
 

Turbo assembler v.2.71 
Furie.asm 
There are more than 1000 lines  
(28 pages) 
 
Turbo Pascal v.7.1  
m_new2l9.pas 
There are more than 500 lines 
(14 pages) 
 
Dyalog APL/W v.10.1.1 
FFTMainF2 
There are more than 250 lines 
(7 pages) 

 
 



There are screenshots of the same computations in Pascal and APL: 
 

 

 
APL takes much less space (lines) to develop the same computation.  
APL code looks: 

 compact; 

 closer to mathematical model; 

 easier to understand, analyze and, as a result, improve. 
Note. Using complex arithmetic from Dyalog APL/W v.12 the APL code would look 
much simpler. 



MULTI-DIGIT MULTIPLICATION (EXAMPLE 1 OF OPTIMISATION). 
STANDARD AND DIAGONAL METHODS 

 
Consider computation: 
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where NU , NV , NR2  – N - and N2 -digit positive integers: 
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24, 32 or 64 bits), 
2,,0  iii rvu . The complexity is 2N  one-word multiplications. 
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    v3 v2 v1 v1 
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Standard method of multiplication of two 4-digit 

numbers ( NN 34 2   memory reads needed) 

 
 
 
 
 
 
 
 
 
 

 
Diagonal scheme of multiplication of two 4-digit 

numbers ( NN 22 2   memory reads needed)  

 
Each diagonal is calculated on registers that reduces the number of memory reads. It gives 
possibility to reduce performance twice and this kind of optimization is not considered. 
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MULTI-DIGIT MULTIPLICATION (EXAMPLE 2 OF OPTIMISATION) 
KARATSUBA-OFMAN METHOD 

It gives possibility to reduce complexity. 

Let`s consider NU 2  and NV2  – positive integers, each of them is allocated in N2   -bit 

words. The numbers NU 2  and NV2  could be shown as:  
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where operators )( 2NUH , )( 2NVH  and )( 2NUL , )( 2NVL  gives high and low parts of NU 2 , NV2 , 

respectively. 

If abbreviations NX 2 , )( 2NUHHU  , )( 2NVHHV  , )( 2NULLU  , )( 2NVLLV   are used, 

than multiplication NN VU 22   could be shown as: 
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There are three N -word operations of multiplications ( HVHU   and LVLU   are repeated 
twice) instead of four N -word operations using standard method. 25% of multiplications are 
reduced using one level of splitting N2 -word number into two N -word numbers. Using 
splitting on more levels reduces complexity more. 

If nN 2  than it is needed n3  one-word simple multiplications but that`s required more 
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N  additions (and subtractions). This method has a limit of using due to additional 

operations needed for recursive calls. 



EXAMPLE OF MULTIPLICATION 4-DIGIT NUMBERS BASED ON 
KARATSUBA-OFMAN METHOD 
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Standard method of multiplication of 

 two 4-digit numbers 

  1 1 

  1 1 

  1 1 

 1 1  

0 1 2 1 

Standard method of multiplication of 
 numbers LVLUHVHU   

    0 1 2 1 

  0 1 2 1   

  0 1 2 1   

0 1 2 1     

0 1 2 3 4 3 2 1 

Total sum of subtotals 

The results are the same using different methods: standard and Karatsuba-Ofman. 
Using Karatsuba method it is enough to compute only once 2-digit numbers instead of 

4-digit numbers due to structure of numbers (1,1,1,1). Karatsuba method works in the rest 
cases. 



MULTI-DIGIT CYCLIC CONVOLUTION 
Operation of cyclic convolution length N  of two sequences NX  и NY :  
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Cyclic convolution length 4N  could be shown as: 



























































3

2

1

0

0321

1032

2103

3210

3

2

1

0

y

y

y

y

xxxx

xxxx

xxxx

xxxx

r

r

r

r

, 

231201303

130231202

033221101

332211000

yxyxyxyxr

yxyxyxyxr

yxyxyxyxr

yxyxyxyxr









, 

3210

21033

10322

03211

32100

rrrr

yyyyx

yyyyx

yyyyx

yyyyx

, 

3210

01233

30122

23011

12300

rrrr

xxxxy

xxxxy

xxxxy

xxxxy

. 

where 16 one-word multiplications are needed using standard approach. 

There are two approaches to get NR . The approach on the right is more convenient to 

describe and make an experiment to find simpler view: 
   321032100 yyyyxxxxa  , 

   321032101 yyyyxxxxa  , 

   321032102 yyyyxxxxa  , 

   321032103 yyyyxxxxa  , 

 32100 41 aaaar  , 

  taaaar  32101 41 ,
 

 32102 41 aaaar  , 

  taaaar  32103 41 . 

4444
4

1
TAWR  , )()( 44444 YWXWA  , 

032123012031 )()( yxyxyxyxyyxxt  , 

,

3

2

1

0

4





















x

x

x

x

X
  

,

3

2

1

0

4





















y

y

y

y

Y
  

,

1111

1111

1111

1111

4
























W

  
.

0

0

4
























t

t
T

 

 

It looks like APL style due of using vectors and arrays. 

It will be shown that APL gives possibility to analyze, develop and improve more 
complicated algorithms. 



MULTIPLICATION ALGORITHM BASED ON 
MULTI-DIGIT CYCLIC CONVOLUTION 

Multiplication of two multi-digit values ),,,( 32104 uuuuU  , ),,,( 32104 vvvvV   length of 4 based on 

cyclic convolution ),,,,0,0,0,0()0,0,0,0,,,,( 012332108 vvvvuuuuR   could be shown like: 
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Multiplication of two 4-digit values  
based on convolution 

Multiplication of two 4-digit values  
Based on convolution with zero lines 
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Multiplication of two 4-digit values  
based on convolution without zero lines 

Multiplication of based on standard 
Method 



COMPUTATION OF CONVOLUTION LENGTH OF N=2
n
 BASED ON METHOD 

PITASSI – DEVISA 
 

Input and output sequences of convolution NNN YXR  , 
nN 2 , are linked: 
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Standard method of computation of convolution 
length of N=8   

 

Parisection method of computation of convolution 
length of N=8 



 ANALYSIS OF ALGORITHM BASED ON FAST HAAR TRANSFORM (XX3FHAARXY) 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

The user should adopt 
for the language.  
APL could be easily adopted 
for the user`s needs. 
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FINDING APPROACH FOR WALSH TRANSFORM CALCULATION (XX3FWALSH5/6G) 

Developing algorithm based on Walsh transform was possible due to using APL as 
approach to analyze, check results and improve code and mathematical model.  

  

 
 
Sorting is needed to get data looked like 
transform 

That`s better to use FWT (instead of Haar transform) as there are a lot of common parts 

  

 

It was iterative process where on each iteration the mathematical model was improved 
using APL and APL code was improved using better mathematical approach. 

Reducing the number of inverse FWTs (xx3fwalsh6kmOp8). 



On initial phase there were used two different fast transforms (Walsh and Hadamar) 
and the link between both transforms (calcHadamar2Walsh). 

 

 

From developer point of view that`s better to have common 
subfunctions instead of separate independent functions. 
The developer need to deliver functions for both fast 
transforms (Walsh and Hadamar). 
 

 



























































1111

1111

1111

1111

1111

1111

1111

1111

1111

1111

1111

1111

1111

1111

1111

1111

CT

 



























































1111

1111

1111

1111

1111

1111

1111

1111

1111

1111

1111

1111

1111

1111

1111

1111

H

 



 COMPUTATIONAL SCHEME OF CONVOLUTION LENGTH OF 8 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

There are a lot of FWTs different lengths across scheme. 
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APL IS A TOOL TO FIND APROACH 
 
The approach is proved afterwards using mathematical formulas (xx3fwalsh6). 

 

 
 

     
 

 

The number of FWTs different length defines complexity of the scheme. 



IMPROVEMENT IN COMPUTATIONAL SCHEME 
The old one: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The new one: 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

There are more coefficients like (2, 1/2, 1/8, etc) but there is only one FWT. 
Coefficients (2, 1/2, 1/8, etc) don`t add more multiplications as they could be replaced 

with bit-shift operations. 
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FINAL COMPUTATIONAL SCHEME OF CONVOLUTION LENGTH OF 8 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Resulted scheme is applicable for parallel computational model as there are a lot of 
the same blocks. APL is useful tool to get parallel computational model as a result. 
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ANALYSIS OF FFT ALGORITHM 
 

Algorithm (using Pascal) looks overcomplicated taking into account there are complex 
numbers. Some part of the code commented as there was attempt to improve algorithm 
making changes in the code. It takes time. 

 

 
 

It was worth to spent time on rewriting Pascal code and improving algorithm analyzing 
APL code. The complicated algorithm looks simpler using APL code.  



There are two functions similar functions FFTUnpackF2 and FFTPackF2 

  

 
 



Changing order of FFTPackF2 and FFTComplexF2 gives possibility to use common function for 
both FFTUnpackF2 and FFTPackF2 

 



APL DESCRIBES PARALLEL MODELS 

ALGORITHM. Computation of multi-digit convolution 

length of 
nN 2  based on FWT and parallel model. 

Input: NX , NY  – sequences length of 
nN 2 , 3n . 

Output: NNN YXR   – convolution of  NX , NY . 

Step 0. Initialization. 

NN
XXX n 


))(( 02 ; NN

YYY n 


))(( 02 . 

Step 1. FWT of initial section  

))(( 0NX . ))(())(( 00 NNN XWX  . 

Step 2. DWT of the rest sections of X  as linear 

combinations of sections of X . 

),( 2MVXX  , ))(())((2 jMjMM XHXLV  , 

1,0  Tj , 
inM  2 , 

iT 3 , 3,0  ni . 

Step 3. DWT of the vector Y  (except two last iterations). 

Step 3a. For i  from 0  to 3n  

Step 3b. ),( 2MVYY  , )())((2 MMM ZEZEUV  , 

Step 3c. 









)))(((

)))(((
))((

jM

jM

jM YHB

YLB
Y , ))(())(( MjM ZWBY  , 

Step 3d. ))(( jMM YZ  , 1,0  Tj ,
inM  2 ,

iT 3 . 

Step 3e. End For i . 
Step 4. Last two iteration of FWT. 

))))(((())(( 44 jj YWBWY  , 13,0 2  nj …… 

 

 

It is very important to have a balance between number of steps (iterations) and number of basic 
operations on each step to build fast algorithm using parallel model.  
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