
.

Scalarization of Index Vectors in Compiled APL

Robert Bernecky

Snake Island Research Inc
18 Fifth Street, Ward’s Island

Toronto, Canada
tel: +1 416 203 0854

bernecky@snakeisland.com

September 30, 2011

Robert Bernecky Scalarization of Index Vectors in Compiled APL

.

Abstract

High-performance for array languages offers several unique
challenges to the compiler writer, including fusion of loops over
large arrays, detection and elimination of scalars as arbitrary
arrays, and eliminating or minimizing the run-time creation of
index vectors.
We introduce one of those challenges in the context of SAC, a
functional array languge, and give preliminary results on the
performance of a compiler that eliminates index vectors by
scalarizing them within the optimization cycle.

Robert Bernecky Scalarization of Index Vectors in Compiled APL

.

The Question

I How much faster is compiled APL than interpreted APL?

I The answer is NOT a scalar.

Robert Bernecky Scalarization of Index Vectors in Compiled APL

.

The Question

I How much faster is compiled APL than interpreted APL?

I The answer is NOT a scalar.

Robert Bernecky Scalarization of Index Vectors in Compiled APL

.

Environment

I Dyalog APL 13.0 vs. APEX/SAC

I The current SAC compiler
I a functional array language
I data-parallel nested loops: With-Loop
I array-based optimizations
I functional loops and conditionals as functions

I Goal: Compiled APL performance competitive with
hand-coded C

Robert Bernecky Scalarization of Index Vectors in Compiled APL

.

Environment

I Dyalog APL 13.0 vs. APEX/SAC
I The current SAC compiler

I a functional array language
I data-parallel nested loops: With-Loop
I array-based optimizations
I functional loops and conditionals as functions

I Goal: Compiled APL performance competitive with
hand-coded C

Robert Bernecky Scalarization of Index Vectors in Compiled APL

.

Environment

I Dyalog APL 13.0 vs. APEX/SAC
I The current SAC compiler

I a functional array language
I data-parallel nested loops: With-Loop
I array-based optimizations
I functional loops and conditionals as functions

I Goal: Compiled APL performance competitive with
hand-coded C

Robert Bernecky Scalarization of Index Vectors in Compiled APL

.

Some Reasons Why APL is Slow

I Fixed per-primitive overheads: Syntax analysis, conf checks,
fn dispatch, mem mgmt

I Variable per-primitive overheads
I Index vector materialization

 0.1

 1

 10

 100

 1,000

b
u
ild

v
A

K
S

b
u
ild

v
fA

K
S

b
u
ild

v
2
A

K
S

c
o
m

p
io

ta
A

K
S

c
o
m

p
io

ta
d
A

K
S

c
s
b
e
n
c
h
A

K
S

d
o
w

n
g
ra

d
e
P

V
A

K
S

fd
A

K
S

g
e
w

lf
A

K
S

h
is

tg
ra

d
e
A

K
S

h
is

tl
p
A

K
S

h
is

to
p
A

K
S

h
is

to
p
fA

K
S

io
ta

n
A

K
S

ip
a
p
e
A

K
S

ip
b
b
A

K
S

ip
b
d
A

K
S

ip
d
d
A

K
S

ip
o
p
n
e
A

K
S

ip
p
lu

s
a
n
d
A

K
S

llt
o
p
A

K
S

lo
g
d
3
A

K
S

lo
g
d
4
A

K
S

lo
o
p
fs

A
K

S
lo

o
p
fv

A
K

S
lo

o
p
is

A
K

S
m

c
o
n
v
A

K
S

m
c
o
n
v
o
u
tA

K
S

n
s
v
A

K
S

n
th

o
n
e
A

K
S

s
c
h
e
d
rA

K
S

s
c
s
A

K
S

te
s
tf
o
rA

K
S

te
s
ti
n
d
x
A

K
S

te
s
tl
c
v
A

K
S

u
n
ir
a
n
d
A

K
S

u
n
ir
a
n
d
3
A

K
S

u
p
g
ra

d
e
B

o
o
lA

K
S

u
p
g
ra

d
e
C

h
a
rA

K
S

u
p
g
ra

d
e
P

V
A

K
S

u
p
g
ra

d
e
R

P
V

A
K

S

S
p
e
e
d
u
p
 (

A
P

L
/A

P
E

X
 w

/A
W

L
F

)

Benchmark name

APL vs. APEX CPU Time Performance (2,011−09−30)

Higher is better for APEX

APL: Dyalog APL 13.0

SAC: 17,654:MODIFIED

Robert Bernecky Scalarization of Index Vectors in Compiled APL

.

Why APL is Slow: Fixed Per-Primitive Overheads

0

20

40

60

80

100

120

140

m
ic

ro
s
e

c
o

n
d

s
/e

le
m

e
n

t

1 3 5 7 9 11 13 15 17 19 21 23 25
elements in array

APL Primitive Overhead

time/element for (Intvec+intvec)

Who suffers? Apps dominated by operations on scalars: CRC,
loopy histograms, dynamic programming, RNG

Robert Bernecky Scalarization of Index Vectors in Compiled APL

.

Why APL is Slow: Fixed Per-Primitive Overheads

 10

 100

 1,000

c
rc

A
K

S

h
is

tl
p
A

K
S

llt
o
p
A

K
S

lo
o
p
is

A
K

S

s
c
s
A

K
S

te
s
tf
o
rA

K
S

S
p
e
e
d
u
p
 (

A
P

L
/A

P
E

X
 w

/A
W

L
F

)

Benchmark name

APL vs. APEX CPU Time Performance (2,011−09−30)

Higher is better for APEX

APL: Dyalog APL 13.0

SAC: 17,654:MODIFIED

Robert Bernecky Scalarization of Index Vectors in Compiled APL

.

Why APL is Slow: Fixed Per-Primitive Overheads

I Scalar-dominated apps have good serial speedup. . .

I but poor parallel speedup

 0x

 0.1x

 0.2x

 0.3x

 0.4x

 0.5x

cr
c

h
is

tl
p

ll
to

p

lo
o
p
is

sc
s

te
st

fo
r

E
x
ec

u
ti

o
n
 t

im
e

(s
ec

)

threads

APEX/SAC Parallel Performance SAC (17654:MODIFIED) real time 2,011−09−30

6−core AMD Phenom II X6 1,075T

mt1

mt2

mt3

mt4

mt5

mt6

Robert Bernecky Scalarization of Index Vectors in Compiled APL

.

Why is APL Slow? Variable Per-Primitive Overheads

I Naive execution: Limited fn composition, e.g. sum(iota(N))

I Array-valued intermediate results: memory madness
I Who suffers? Apps dominated by operations on large arrays:

Signal processing, convolution, normal move-out

 0.1

 1

 10

 100

 1,000

io
ta

n
A

K
S

ip
a
p
e
A

K
S

ip
b
d
A

K
S

ip
o
p
n
e
A

K
S

lo
g
d
3
A

K
S

lo
g
d
4
A

K
S

u
p
g
ra

d
e
C

h
a
rA

K
S

S
p
e
e
d
u
p
 (

A
P

L
/A

P
E

X
 w

/A
W

L
F

)

Benchmark name

APL vs. APEX CPU Time Performance (2,011−09−30)

Higher is better for APEX

APL: Dyalog APL 13.0

SAC: 17,654:MODIFIED

Robert Bernecky Scalarization of Index Vectors in Compiled APL

.

Why is APL Slow? Variable Per-Primitive Overheads

I Naive execution: Limited fn composition, e.g. sum(iota(N))
I Array-valued intermediate results: memory madness

I Who suffers? Apps dominated by operations on large arrays:
Signal processing, convolution, normal move-out

 0.1

 1

 10

 100

 1,000

io
ta

n
A

K
S

ip
a
p
e
A

K
S

ip
b
d
A

K
S

ip
o
p
n
e
A

K
S

lo
g
d
3
A

K
S

lo
g
d
4
A

K
S

u
p
g
ra

d
e
C

h
a
rA

K
S

S
p
e
e
d
u
p
 (

A
P

L
/A

P
E

X
 w

/A
W

L
F

)

Benchmark name

APL vs. APEX CPU Time Performance (2,011−09−30)

Higher is better for APEX

APL: Dyalog APL 13.0

SAC: 17,654:MODIFIED

Robert Bernecky Scalarization of Index Vectors in Compiled APL

.

Why is APL Slow? Variable Per-Primitive Overheads

I Naive execution: Limited fn composition, e.g. sum(iota(N))
I Array-valued intermediate results: memory madness
I Who suffers? Apps dominated by operations on large arrays:

Signal processing, convolution, normal move-out

 0.1

 1

 10

 100

 1,000

io
ta

n
A

K
S

ip
a
p
e
A

K
S

ip
b
d
A

K
S

ip
o
p
n
e
A

K
S

lo
g
d
3
A

K
S

lo
g
d
4
A

K
S

u
p
g
ra

d
e
C

h
a
rA

K
S

S
p
e
e
d
u
p
 (

A
P

L
/A

P
E

X
 w

/A
W

L
F

)

Benchmark name

APL vs. APEX CPU Time Performance (2,011−09−30)

Higher is better for APEX

APL: Dyalog APL 13.0

SAC: 17,654:MODIFIED

Robert Bernecky Scalarization of Index Vectors in Compiled APL

.

Why is APL Slow? Variable Per-Primitive Overheads

I Who suffers? Apps dominated by operations on large arrays:
Signal processing, convolution, normal move-out

 0x

 0.2x

 0.4x

 0.6x

 0.8x

 1x

 1.2x

io
ta

n

ip
ap

e

ip
b
b
A

K
D

ip
b
d

ip
o
p
n
eA

K
D

ip
o
p
n
e

lo
g
d
3

lo
g
d
4

u
p
g
ra

d
eC

h
ar

E
x
ec

u
ti

o
n
 t

im
e

(s
ec

)

threads

APEX/SAC Parallel Performance SAC (17654:MODIFIED) real time 2,011−09−30

6−core AMD Phenom II X6 1,075T mt1

mt2

mt3

mt4

mt5

mt6

Robert Bernecky Scalarization of Index Vectors in Compiled APL

.

Why is APL Slow? Materialized Index Vectors

I Mike Jenkins’ matrix divide model
a[;i,pi] = a[;pi,i]

I [i,pi] and [pi,i] are materialized index vectors

I A few simple changes to scalarize index vectors:
tmp = a[;i]

a[;i] = a[;pi]

a[;pi] = tmp

I Matrix divide model now runs twice as fast!

Robert Bernecky Scalarization of Index Vectors in Compiled APL

.

Why is APL Slow? Materialized Index Vectors

I Mike Jenkins’ matrix divide model
a[;i,pi] = a[;pi,i]

I [i,pi] and [pi,i] are materialized index vectors

I A few simple changes to scalarize index vectors:
tmp = a[;i]

a[;i] = a[;pi]

a[;pi] = tmp

I Matrix divide model now runs twice as fast!

Robert Bernecky Scalarization of Index Vectors in Compiled APL

.

Why is APL Slow? Materialized Index Vectors

I Mike Jenkins’ matrix divide model
a[;i,pi] = a[;pi,i]

I [i,pi] and [pi,i] are materialized index vectors

I A few simple changes to scalarize index vectors:
tmp = a[;i]

a[;i] = a[;pi]

a[;pi] = tmp

I Matrix divide model now runs twice as fast!

Robert Bernecky Scalarization of Index Vectors in Compiled APL

.

Why is APL Slow? Materialized Index Vectors

I Mike Jenkins’ matrix divide model
a[;i,pi] = a[;pi,i]

I [i,pi] and [pi,i] are materialized index vectors

I A few simple changes to scalarize index vectors:
tmp = a[;i]

a[;i] = a[;pi]

a[;pi] = tmp

I Matrix divide model now runs twice as fast!

Robert Bernecky Scalarization of Index Vectors in Compiled APL

.

Why Materialized Index Vectors are Expensive

I Materialization of [i,pi] and [pi,i]:

I (* for indexing part)
*Increment reference counts on i and pi

Allocate 2-element temp vector
Initialize temp vector descriptor
Initialize temp vector elements
*Perform indexing
Deallocate 2-element temp vector
*Decrement reference counts on i and pi

Robert Bernecky Scalarization of Index Vectors in Compiled APL

.

Why Materialized Index Vectors are Expensive

I Materialization of [i,pi] and [pi,i]:

I (* for indexing part)
*Increment reference counts on i and pi

Allocate 2-element temp vector
Initialize temp vector descriptor
Initialize temp vector elements
*Perform indexing
Deallocate 2-element temp vector
*Decrement reference counts on i and pi

Robert Bernecky Scalarization of Index Vectors in Compiled APL

.

Why Materialized Index Vectors are Expensive

I Who suffers? Apps using explicit array indexing

I e.g., many apps dominated by indexed assign

I Who suffers? Matrix divide, compress, deal, dynamic
programming

I Who suffers? Inner products that use the CDC STAR-100
algorithm

I 800x800 ipplusandAKD CPU time: 45 minutes!

Robert Bernecky Scalarization of Index Vectors in Compiled APL

.

Why Materialized Index Vectors are Expensive

I Who suffers? Apps using explicit array indexing

I e.g., many apps dominated by indexed assign

I Who suffers? Matrix divide, compress, deal, dynamic
programming

I Who suffers? Inner products that use the CDC STAR-100
algorithm

I 800x800 ipplusandAKD CPU time: 45 minutes!

Robert Bernecky Scalarization of Index Vectors in Compiled APL

.

Why Materialized Index Vectors are Expensive

I Who suffers? Apps using explicit array indexing

I e.g., many apps dominated by indexed assign

I Who suffers? Matrix divide, compress, deal, dynamic
programming

I Who suffers? Inner products that use the CDC STAR-100
algorithm

I 800x800 ipplusandAKD CPU time: 45 minutes!

Robert Bernecky Scalarization of Index Vectors in Compiled APL

.

Why Materialized Index Vectors are Expensive

I Who suffers? Apps using explicit array indexing

I e.g., many apps dominated by indexed assign

I Who suffers? Matrix divide, compress, deal, dynamic
programming

I Who suffers? Inner products that use the CDC STAR-100
algorithm

I 800x800 ipplusandAKD CPU time: 45 minutes!

Robert Bernecky Scalarization of Index Vectors in Compiled APL

.

Why Materialized Index Vectors are Expensive

I Who suffers? Apps using explicit array indexing

I e.g., many apps dominated by indexed assign

I Who suffers? Matrix divide, compress, deal, dynamic
programming

I Who suffers? Inner products that use the CDC STAR-100
algorithm

I 800x800 ipplusandAKD CPU time: 45 minutes!

Robert Bernecky Scalarization of Index Vectors in Compiled APL

.

Eliminating Materialized Index Vectors With IVE

I IFL2006 paper: Index Vector Elimination (IVE)
Bernecky, Grelck, Herhut, Scholz, Trojahner, and Schafarenko

I Post-optimization transformation

I Start with:
IV = [i, j, k]

z = sel(IV, M)

I IVE: Replace: z = M[IV] by:
IV = [i, j, k]

offset = vect2offset(shape(M), IV)

z = idxsel(offset, M)

I Implication: IV is a materialized index vector!

I Implication: offset calculation may be liftable (LIR)

Robert Bernecky Scalarization of Index Vectors in Compiled APL

.

Eliminating Materialized Index Vectors With IVE

I IFL2006 paper: Index Vector Elimination (IVE)
Bernecky, Grelck, Herhut, Scholz, Trojahner, and Schafarenko

I Post-optimization transformation

I Start with:
IV = [i, j, k]

z = sel(IV, M)

I IVE: Replace: z = M[IV] by:
IV = [i, j, k]

offset = vect2offset(shape(M), IV)

z = idxsel(offset, M)

I Implication: IV is a materialized index vector!

I Implication: offset calculation may be liftable (LIR)

Robert Bernecky Scalarization of Index Vectors in Compiled APL

.

Eliminating Materialized Index Vectors With IVE

I IFL2006 paper: Index Vector Elimination (IVE)
Bernecky, Grelck, Herhut, Scholz, Trojahner, and Schafarenko

I Post-optimization transformation

I Start with:
IV = [i, j, k]

z = sel(IV, M)

I IVE: Replace: z = M[IV] by:
IV = [i, j, k]

offset = vect2offset(shape(M), IV)

z = idxsel(offset, M)

I Implication: IV is a materialized index vector!

I Implication: offset calculation may be liftable (LIR)

Robert Bernecky Scalarization of Index Vectors in Compiled APL

.

Eliminating Materialized Index Vectors With IVE

I IFL2006 paper: Index Vector Elimination (IVE)
Bernecky, Grelck, Herhut, Scholz, Trojahner, and Schafarenko

I Post-optimization transformation

I Start with:
IV = [i, j, k]

z = sel(IV, M)

I IVE: Replace: z = M[IV] by:
IV = [i, j, k]

offset = vect2offset(shape(M), IV)

z = idxsel(offset, M)

I Implication: IV is a materialized index vector!

I Implication: offset calculation may be liftable (LIR)

Robert Bernecky Scalarization of Index Vectors in Compiled APL

.

Eliminating Materialized Index Vectors With IVE

I IFL2006 paper: Index Vector Elimination (IVE)
Bernecky, Grelck, Herhut, Scholz, Trojahner, and Schafarenko

I Post-optimization transformation

I Start with:
IV = [i, j, k]

z = sel(IV, M)

I IVE: Replace: z = M[IV] by:
IV = [i, j, k]

offset = vect2offset(shape(M), IV)

z = idxsel(offset, M)

I Implication: IV is a materialized index vector!

I Implication: offset calculation may be liftable (LIR)

Robert Bernecky Scalarization of Index Vectors in Compiled APL

.

Eliminating Materialized Index Vectors With IVE

I IFL2006 paper: Index Vector Elimination (IVE)
Bernecky, Grelck, Herhut, Scholz, Trojahner, and Schafarenko

I Post-optimization transformation

I Start with:
IV = [i, j, k]

z = sel(IV, M)

I IVE: Replace: z = M[IV] by:
IV = [i, j, k]

offset = vect2offset(shape(M), IV)

z = idxsel(offset, M)

I Implication: IV is a materialized index vector!

I Implication: offset calculation may be liftable (LIR)

Robert Bernecky Scalarization of Index Vectors in Compiled APL

.

Eliminating Materialized Index Vectors With IVE

I IVE: If IV can be represented as scalars, eliminate
vect2offset. Before:
IV = [i, j, k]

offset = vect2offset(shape(M), IV)

z = idxsel(offset, M)

I After:
IV = [i, j, k]

offset = idxs2offset(shape(M), i, j, k)

z = idxsel(offset, M)

I IV is now dead code, and can be eliminated!

Robert Bernecky Scalarization of Index Vectors in Compiled APL

.

Eliminating Materialized Index Vectors With IVE

I IVE: If IV can be represented as scalars, eliminate
vect2offset. Before:
IV = [i, j, k]

offset = vect2offset(shape(M), IV)

z = idxsel(offset, M)

I After:
IV = [i, j, k]

offset = idxs2offset(shape(M), i, j, k)

z = idxsel(offset, M)

I IV is now dead code, and can be eliminated!

Robert Bernecky Scalarization of Index Vectors in Compiled APL

.

Eliminating Materialized Index Vectors With IVE

I IVE: If IV can be represented as scalars, eliminate
vect2offset. Before:
IV = [i, j, k]

offset = vect2offset(shape(M), IV)

z = idxsel(offset, M)

I After:
IV = [i, j, k]

offset = idxs2offset(shape(M), i, j, k)

z = idxsel(offset, M)

I IV is now dead code, and can be eliminated!

Robert Bernecky Scalarization of Index Vectors in Compiled APL

.

Eliminating Materialized Index Vectors With IVE

I IVE: If IV is NOT scalars, scalarize it. Before:
offset = vect2offset(shape(M), IV)

z = idxsel(offset, M)

I After:
I = IV[0]

J = IV[1]

K = IV[2]

JV = [I, J, K]

offset = vect2offset(shape(M), JV)

I IV is now dead code, and can be eliminated!

I Earlier substitution by idxs2offset now feasible.

I Unfortunately. . .

Robert Bernecky Scalarization of Index Vectors in Compiled APL

.

Eliminating Materialized Index Vectors With IVE

I IVE: If IV is NOT scalars, scalarize it. Before:
offset = vect2offset(shape(M), IV)

z = idxsel(offset, M)

I After:
I = IV[0]

J = IV[1]

K = IV[2]

JV = [I, J, K]

offset = vect2offset(shape(M), JV)

I IV is now dead code, and can be eliminated!

I Earlier substitution by idxs2offset now feasible.

I Unfortunately. . .

Robert Bernecky Scalarization of Index Vectors in Compiled APL

.

Eliminating Materialized Index Vectors With IVE

I IVE: If IV is NOT scalars, scalarize it. Before:
offset = vect2offset(shape(M), IV)

z = idxsel(offset, M)

I After:
I = IV[0]

J = IV[1]

K = IV[2]

JV = [I, J, K]

offset = vect2offset(shape(M), JV)

I IV is now dead code, and can be eliminated!

I Earlier substitution by idxs2offset now feasible.

I Unfortunately. . .

Robert Bernecky Scalarization of Index Vectors in Compiled APL

.

Eliminating Materialized Index Vectors With IVE

I IVE: If IV is NOT scalars, scalarize it. Before:
offset = vect2offset(shape(M), IV)

z = idxsel(offset, M)

I After:
I = IV[0]

J = IV[1]

K = IV[2]

JV = [I, J, K]

offset = vect2offset(shape(M), JV)

I IV is now dead code, and can be eliminated!

I Earlier substitution by idxs2offset now feasible.

I Unfortunately. . .

Robert Bernecky Scalarization of Index Vectors in Compiled APL

.

Eliminating Materialized Index Vectors With IVE

I IVE: If IV is NOT scalars, scalarize it. Before:
offset = vect2offset(shape(M), IV)

z = idxsel(offset, M)

I After:
I = IV[0]

J = IV[1]

K = IV[2]

JV = [I, J, K]

offset = vect2offset(shape(M), JV)

I IV is now dead code, and can be eliminated!

I Earlier substitution by idxs2offset now feasible.

I Unfortunately. . .

Robert Bernecky Scalarization of Index Vectors in Compiled APL

.

Dueling Optimizations: IVE vs. LIR

I IVE introduces JV = [I, J, K]

I Loop-Invariant Removal (LIR) lifts I, J, K, JV out of the
function

I Constant Folding (CF) replaces JV = [I, J, K] by JV =

IV

I Common-subexpression elimination (CSE) replaces JV by IV

I This is where we came in!

I So, what can we do?

I A kludged LIR to deal with this was deemed tasteless

Robert Bernecky Scalarization of Index Vectors in Compiled APL

.

Dueling Optimizations: IVE vs. LIR

I IVE introduces JV = [I, J, K]

I Loop-Invariant Removal (LIR) lifts I, J, K, JV out of the
function

I Constant Folding (CF) replaces JV = [I, J, K] by JV =

IV

I Common-subexpression elimination (CSE) replaces JV by IV

I This is where we came in!

I So, what can we do?

I A kludged LIR to deal with this was deemed tasteless

Robert Bernecky Scalarization of Index Vectors in Compiled APL

.

Dueling Optimizations: IVE vs. LIR

I IVE introduces JV = [I, J, K]

I Loop-Invariant Removal (LIR) lifts I, J, K, JV out of the
function

I Constant Folding (CF) replaces JV = [I, J, K] by JV =

IV

I Common-subexpression elimination (CSE) replaces JV by IV

I This is where we came in!

I So, what can we do?

I A kludged LIR to deal with this was deemed tasteless

Robert Bernecky Scalarization of Index Vectors in Compiled APL

.

Dueling Optimizations: IVE vs. LIR

I IVE introduces JV = [I, J, K]

I Loop-Invariant Removal (LIR) lifts I, J, K, JV out of the
function

I Constant Folding (CF) replaces JV = [I, J, K] by JV =

IV

I Common-subexpression elimination (CSE) replaces JV by IV

I This is where we came in!

I So, what can we do?

I A kludged LIR to deal with this was deemed tasteless

Robert Bernecky Scalarization of Index Vectors in Compiled APL

.

Dueling Optimizations: IVE vs. LIR

I IVE introduces JV = [I, J, K]

I Loop-Invariant Removal (LIR) lifts I, J, K, JV out of the
function

I Constant Folding (CF) replaces JV = [I, J, K] by JV =

IV

I Common-subexpression elimination (CSE) replaces JV by IV

I This is where we came in!

I So, what can we do?

I A kludged LIR to deal with this was deemed tasteless

Robert Bernecky Scalarization of Index Vectors in Compiled APL

.

Dueling Optimizations: IVE vs. LIR

I IVE introduces JV = [I, J, K]

I Loop-Invariant Removal (LIR) lifts I, J, K, JV out of the
function

I Constant Folding (CF) replaces JV = [I, J, K] by JV =

IV

I Common-subexpression elimination (CSE) replaces JV by IV

I This is where we came in!

I So, what can we do?

I A kludged LIR to deal with this was deemed tasteless

Robert Bernecky Scalarization of Index Vectors in Compiled APL

.

Dueling Optimizations: IVE vs. LIR

I IVE introduces JV = [I, J, K]

I Loop-Invariant Removal (LIR) lifts I, J, K, JV out of the
function

I Constant Folding (CF) replaces JV = [I, J, K] by JV =

IV

I Common-subexpression elimination (CSE) replaces JV by IV

I This is where we came in!

I So, what can we do?

I A kludged LIR to deal with this was deemed tasteless

Robert Bernecky Scalarization of Index Vectors in Compiled APL

.

Biting the Bullet

I Another approach: move IVE into the optimization cycle

I Having IVE in opt cycle enables other optimizations!

I But, it also breaks many optimizations

I To prevent dueling, we must scalarize all index vector ops!

I e.g., unroll IV+1, guard and extrema functions..

I e.g., extend existing optimizations, such as CF

I The Good News: I had already scalarized many index vectors
for Algebraic With-Loop Folding!

Robert Bernecky Scalarization of Index Vectors in Compiled APL

.

Biting the Bullet

I Another approach: move IVE into the optimization cycle

I Having IVE in opt cycle enables other optimizations!

I But, it also breaks many optimizations

I To prevent dueling, we must scalarize all index vector ops!

I e.g., unroll IV+1, guard and extrema functions..

I e.g., extend existing optimizations, such as CF

I The Good News: I had already scalarized many index vectors
for Algebraic With-Loop Folding!

Robert Bernecky Scalarization of Index Vectors in Compiled APL

.

Biting the Bullet

I Another approach: move IVE into the optimization cycle

I Having IVE in opt cycle enables other optimizations!

I But, it also breaks many optimizations

I To prevent dueling, we must scalarize all index vector ops!

I e.g., unroll IV+1, guard and extrema functions..

I e.g., extend existing optimizations, such as CF

I The Good News: I had already scalarized many index vectors
for Algebraic With-Loop Folding!

Robert Bernecky Scalarization of Index Vectors in Compiled APL

.

Biting the Bullet

I Another approach: move IVE into the optimization cycle

I Having IVE in opt cycle enables other optimizations!

I But, it also breaks many optimizations

I To prevent dueling, we must scalarize all index vector ops!

I e.g., unroll IV+1, guard and extrema functions..

I e.g., extend existing optimizations, such as CF

I The Good News: I had already scalarized many index vectors
for Algebraic With-Loop Folding!

Robert Bernecky Scalarization of Index Vectors in Compiled APL

.

Biting the Bullet

I Another approach: move IVE into the optimization cycle

I Having IVE in opt cycle enables other optimizations!

I But, it also breaks many optimizations

I To prevent dueling, we must scalarize all index vector ops!

I e.g., unroll IV+1, guard and extrema functions..

I e.g., extend existing optimizations, such as CF

I The Good News: I had already scalarized many index vectors
for Algebraic With-Loop Folding!

Robert Bernecky Scalarization of Index Vectors in Compiled APL

.

Biting the Bullet

I Another approach: move IVE into the optimization cycle

I Having IVE in opt cycle enables other optimizations!

I But, it also breaks many optimizations

I To prevent dueling, we must scalarize all index vector ops!

I e.g., unroll IV+1, guard and extrema functions..

I e.g., extend existing optimizations, such as CF

I The Good News: I had already scalarized many index vectors
for Algebraic With-Loop Folding!

Robert Bernecky Scalarization of Index Vectors in Compiled APL

.

Biting the Bullet

I Another approach: move IVE into the optimization cycle

I Having IVE in opt cycle enables other optimizations!

I But, it also breaks many optimizations

I To prevent dueling, we must scalarize all index vector ops!

I e.g., unroll IV+1, guard and extrema functions..

I e.g., extend existing optimizations, such as CF

I The Good News: I had already scalarized many index vectors
for Algebraic With-Loop Folding!

Robert Bernecky Scalarization of Index Vectors in Compiled APL

.

Current Status

I Moving IVE into optimization cycle worked, sort of:

I The Good News: ipplusandAKD CPU time: 8 seconds,
instead of 45 minutes

I The Bad News: New primitives in AST broke some
optimizations!

I More Bad News: I am still fixing them!

I The Good News: Performance is improving daily

I More Good News: Many opportunities exist for further
optimization

I Even More Good News: More parallelism is coming

Robert Bernecky Scalarization of Index Vectors in Compiled APL

.

Current Status

I Moving IVE into optimization cycle worked, sort of:

I The Good News: ipplusandAKD CPU time: 8 seconds,
instead of 45 minutes

I The Bad News: New primitives in AST broke some
optimizations!

I More Bad News: I am still fixing them!

I The Good News: Performance is improving daily

I More Good News: Many opportunities exist for further
optimization

I Even More Good News: More parallelism is coming

Robert Bernecky Scalarization of Index Vectors in Compiled APL

.

Current Status

I Moving IVE into optimization cycle worked, sort of:

I The Good News: ipplusandAKD CPU time: 8 seconds,
instead of 45 minutes

I The Bad News: New primitives in AST broke some
optimizations!

I More Bad News: I am still fixing them!

I The Good News: Performance is improving daily

I More Good News: Many opportunities exist for further
optimization

I Even More Good News: More parallelism is coming

Robert Bernecky Scalarization of Index Vectors in Compiled APL

.

Current Status

I Moving IVE into optimization cycle worked, sort of:

I The Good News: ipplusandAKD CPU time: 8 seconds,
instead of 45 minutes

I The Bad News: New primitives in AST broke some
optimizations!

I More Bad News: I am still fixing them!

I The Good News: Performance is improving daily

I More Good News: Many opportunities exist for further
optimization

I Even More Good News: More parallelism is coming

Robert Bernecky Scalarization of Index Vectors in Compiled APL

.

Current Status

I Moving IVE into optimization cycle worked, sort of:

I The Good News: ipplusandAKD CPU time: 8 seconds,
instead of 45 minutes

I The Bad News: New primitives in AST broke some
optimizations!

I More Bad News: I am still fixing them!

I The Good News: Performance is improving daily

I More Good News: Many opportunities exist for further
optimization

I Even More Good News: More parallelism is coming

Robert Bernecky Scalarization of Index Vectors in Compiled APL

.

Current Status

I Moving IVE into optimization cycle worked, sort of:

I The Good News: ipplusandAKD CPU time: 8 seconds,
instead of 45 minutes

I The Bad News: New primitives in AST broke some
optimizations!

I More Bad News: I am still fixing them!

I The Good News: Performance is improving daily

I More Good News: Many opportunities exist for further
optimization

I Even More Good News: More parallelism is coming

Robert Bernecky Scalarization of Index Vectors in Compiled APL

.

Current Status

I Moving IVE into optimization cycle worked, sort of:

I The Good News: ipplusandAKD CPU time: 8 seconds,
instead of 45 minutes

I The Bad News: New primitives in AST broke some
optimizations!

I More Bad News: I am still fixing them!

I The Good News: Performance is improving daily

I More Good News: Many opportunities exist for further
optimization

I Even More Good News: More parallelism is coming

Robert Bernecky Scalarization of Index Vectors in Compiled APL

.

How Fast Is Compiled APL?

I Array sizes affect performance

I Iteration counts affect performance

I Indexed assigns affect performance

I Characterize your application, then we can provide an answer.

Robert Bernecky Scalarization of Index Vectors in Compiled APL

.

How Fast Is Compiled APL?

I Array sizes affect performance

I Iteration counts affect performance

I Indexed assigns affect performance

I Characterize your application, then we can provide an answer.

Robert Bernecky Scalarization of Index Vectors in Compiled APL

.

How Fast Is Compiled APL?

I Array sizes affect performance

I Iteration counts affect performance

I Indexed assigns affect performance

I Characterize your application, then we can provide an answer.

Robert Bernecky Scalarization of Index Vectors in Compiled APL

.

How Fast Is Compiled APL?

I Array sizes affect performance

I Iteration counts affect performance

I Indexed assigns affect performance

I Characterize your application, then we can provide an answer.

Robert Bernecky Scalarization of Index Vectors in Compiled APL

