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Abstract

High-performance for array languages offers several unique
challenges to the compiler writer, including fusion of loops over
large arrays, detection and elimination of scalars as arbitrary
arrays, and eliminating or minimizing the run-time creation of
index vectors.
We introduce one of those challenges in the context of SAC, a
functional array languge, and give preliminary results on the
performance of a compiler that eliminates index vectors by
scalarizing them within the optimization cycle.
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The Question

I How much faster is compiled APL than interpreted APL?

I The answer is NOT a scalar.
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Environment

I Dyalog APL 13.0 vs. APEX/SAC

I The current SAC compiler
I a functional array language
I data-parallel nested loops: With-Loop
I array-based optimizations
I functional loops and conditionals as functions

I Goal: Compiled APL performance competitive with
hand-coded C
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Some Reasons Why APL is Slow

I Fixed per-primitive overheads: Syntax analysis, conf checks,
fn dispatch, mem mgmt

I Variable per-primitive overheads
I Index vector materialization
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Why APL is Slow: Fixed Per-Primitive Overheads
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Why APL is Slow: Fixed Per-Primitive Overheads

I Scalar-dominated apps have good serial speedup. . .

I but poor parallel speedup
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Why is APL Slow? Variable Per-Primitive Overheads

I Naive execution: Limited fn composition, e.g. sum( iota( N))

I Array-valued intermediate results: memory madness
I Who suffers? Apps dominated by operations on large arrays:

Signal processing, convolution, normal move-out
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Why is APL Slow? Variable Per-Primitive Overheads

I Who suffers? Apps dominated by operations on large arrays:
Signal processing, convolution, normal move-out
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Why is APL Slow? Materialized Index Vectors

I Mike Jenkins’ matrix divide model
a[;i,pi] = a[;pi,i]

I [i,pi] and [pi,i] are materialized index vectors

I A few simple changes to scalarize index vectors:
tmp = a[;i]

a[;i] = a[;pi]

a[;pi] = tmp

I Matrix divide model now runs twice as fast!
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Why Materialized Index Vectors are Expensive

I Materialization of [i,pi] and [pi,i]:

I (* for indexing part)
*Increment reference counts on i and pi

Allocate 2-element temp vector
Initialize temp vector descriptor
Initialize temp vector elements
*Perform indexing
Deallocate 2-element temp vector
*Decrement reference counts on i and pi
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Why Materialized Index Vectors are Expensive

I Who suffers? Apps using explicit array indexing

I e.g., many apps dominated by indexed assign

I Who suffers? Matrix divide, compress, deal, dynamic
programming

I Who suffers? Inner products that use the CDC STAR-100
algorithm

I 800x800 ipplusandAKD CPU time: 45 minutes!
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Eliminating Materialized Index Vectors With IVE

I IFL2006 paper: Index Vector Elimination (IVE)
Bernecky, Grelck, Herhut, Scholz, Trojahner, and Schafarenko

I Post-optimization transformation

I Start with:
IV = [ i, j, k]

z = sel( IV, M)

I IVE: Replace: z = M[ IV] by:
IV = [ i, j, k]

offset = vect2offset( shape(M), IV)

z = idxsel( offset, M)

I Implication: IV is a materialized index vector!

I Implication: offset calculation may be liftable (LIR)
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Eliminating Materialized Index Vectors With IVE

I IVE: If IV can be represented as scalars, eliminate
vect2offset. Before:
IV = [ i, j, k]

offset = vect2offset( shape(M), IV)

z = idxsel( offset, M)

I After:
IV = [ i, j, k]

offset = idxs2offset( shape(M), i, j, k)

z = idxsel( offset, M)

I IV is now dead code, and can be eliminated!
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Eliminating Materialized Index Vectors With IVE

I IVE: If IV is NOT scalars, scalarize it. Before:
offset = vect2offset( shape(M), IV)

z = idxsel( offset, M)

I After:
I = IV[0]

J = IV[1]

K = IV[2]

JV = [ I, J, K]

offset = vect2offset( shape(M), JV)

I IV is now dead code, and can be eliminated!

I Earlier substitution by idxs2offset now feasible.

I Unfortunately. . .
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Dueling Optimizations: IVE vs. LIR

I IVE introduces JV = [ I, J, K]

I Loop-Invariant Removal (LIR) lifts I, J, K, JV out of the
function

I Constant Folding (CF) replaces JV = [ I, J, K] by JV =

IV

I Common-subexpression elimination (CSE) replaces JV by IV

I This is where we came in!

I So, what can we do?

I A kludged LIR to deal with this was deemed tasteless
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. . . . . .

Biting the Bullet

I Another approach: move IVE into the optimization cycle

I Having IVE in opt cycle enables other optimizations!

I But, it also breaks many optimizations

I To prevent dueling, we must scalarize all index vector ops!

I e.g., unroll IV+1, guard and extrema functions..

I e.g., extend existing optimizations, such as CF

I The Good News: I had already scalarized many index vectors
for Algebraic With-Loop Folding!
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. . . . . .

Current Status

I Moving IVE into optimization cycle worked, sort of:

I The Good News: ipplusandAKD CPU time: 8 seconds,
instead of 45 minutes

I The Bad News: New primitives in AST broke some
optimizations!

I More Bad News: I am still fixing them!

I The Good News: Performance is improving daily

I More Good News: Many opportunities exist for further
optimization

I Even More Good News: More parallelism is coming

Robert Bernecky Scalarization of Index Vectors in Compiled APL



. . . . . .

Current Status

I Moving IVE into optimization cycle worked, sort of:

I The Good News: ipplusandAKD CPU time: 8 seconds,
instead of 45 minutes

I The Bad News: New primitives in AST broke some
optimizations!

I More Bad News: I am still fixing them!

I The Good News: Performance is improving daily

I More Good News: Many opportunities exist for further
optimization

I Even More Good News: More parallelism is coming

Robert Bernecky Scalarization of Index Vectors in Compiled APL



. . . . . .

Current Status

I Moving IVE into optimization cycle worked, sort of:

I The Good News: ipplusandAKD CPU time: 8 seconds,
instead of 45 minutes

I The Bad News: New primitives in AST broke some
optimizations!

I More Bad News: I am still fixing them!

I The Good News: Performance is improving daily

I More Good News: Many opportunities exist for further
optimization

I Even More Good News: More parallelism is coming

Robert Bernecky Scalarization of Index Vectors in Compiled APL



. . . . . .

Current Status

I Moving IVE into optimization cycle worked, sort of:

I The Good News: ipplusandAKD CPU time: 8 seconds,
instead of 45 minutes

I The Bad News: New primitives in AST broke some
optimizations!

I More Bad News: I am still fixing them!

I The Good News: Performance is improving daily

I More Good News: Many opportunities exist for further
optimization

I Even More Good News: More parallelism is coming

Robert Bernecky Scalarization of Index Vectors in Compiled APL



. . . . . .

Current Status

I Moving IVE into optimization cycle worked, sort of:

I The Good News: ipplusandAKD CPU time: 8 seconds,
instead of 45 minutes

I The Bad News: New primitives in AST broke some
optimizations!

I More Bad News: I am still fixing them!

I The Good News: Performance is improving daily

I More Good News: Many opportunities exist for further
optimization

I Even More Good News: More parallelism is coming

Robert Bernecky Scalarization of Index Vectors in Compiled APL



. . . . . .

Current Status

I Moving IVE into optimization cycle worked, sort of:

I The Good News: ipplusandAKD CPU time: 8 seconds,
instead of 45 minutes

I The Bad News: New primitives in AST broke some
optimizations!

I More Bad News: I am still fixing them!

I The Good News: Performance is improving daily

I More Good News: Many opportunities exist for further
optimization

I Even More Good News: More parallelism is coming

Robert Bernecky Scalarization of Index Vectors in Compiled APL



. . . . . .

Current Status

I Moving IVE into optimization cycle worked, sort of:

I The Good News: ipplusandAKD CPU time: 8 seconds,
instead of 45 minutes

I The Bad News: New primitives in AST broke some
optimizations!

I More Bad News: I am still fixing them!

I The Good News: Performance is improving daily

I More Good News: Many opportunities exist for further
optimization

I Even More Good News: More parallelism is coming

Robert Bernecky Scalarization of Index Vectors in Compiled APL



. . . . . .

How Fast Is Compiled APL?

I Array sizes affect performance

I Iteration counts affect performance

I Indexed assigns affect performance

I Characterize your application, then we can provide an answer.
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