
.

Astounding Performance Looms!

Robert Bernecky

Snake Island Research Inc
18 Fifth Street, Ward's Island

Toronto, Canada
tel: +1 416 203 0854

bernecky@snakeisland.com

September 16, 2009

Robert Bernecky Astounding Performance Looms!

.

Abstract

Array languages, despite their proven advantages in
time-to-solution and terse expression, continue to have a
reputation for poor performance compared to imperative
languages, such as C and Fortran. That reputation is about to
change, thanks to recent advances in array compilation theory,
APL's inherent parallelism, and the many-core computers that
are now commonplace.
We showcase the state of the art of array languages, pitting
interpreted APL code against compiled APL against Fortran 77
and Fortran 95, in both serial and parallel environments. We
also outline how we propose to close the remaining
performance gap between interpreted APL and compiled array
languages.

Robert Bernecky Astounding Performance Looms!

.

Dyalog APL Performance: State of the Art

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

b
u
ild

v
A

K
D

b
u
ild

v
fA

K
D

b
u
ild

v
2
A

K
D

c
o
m

p
io

ta
A

K
D

c
o
m

p
io

ta
d
A

K
D

c
rc

A
K

D
c
rc

2
A

K
D

c
s
b
e
n
c
h
A

K
D

d
o
w

n
g
ra

d
e
P

V
A

K
D

d
tb

A
K

D
d
tb

2
A

K
D

fd
A

K
D

g
e
w

lf
A

K
D

h
is

tg
ra

d
e
A

K
D

h
is

tl
p
A

K
D

h
is

to
p
A

K
D

h
is

to
p
fA

K
D

io
ta

n
A

K
D

ip
a
p
e
A

K
D

ip
b
b
A

K
D

ip
b
d
A

K
D

ip
d
d
A

K
D

ip
o
p
n
e
A

K
D

ip
p
lu

s
a
n
d
A

K
D

llt
o
p
A

K
D

lo
g
d
A

K
D

lo
g
d
2
A

K
D

lo
g
d
3
A

K
D

lo
g
d
4
A

K
D

lo
o
p
fs

A
K

D
lo

o
p
fv

A
K

D
lo

o
p
is

A
K

D
m

a
ti
o
ta

A
K

D
m

c
o
n
v
A

K
D

m
c
o
n
v
o
u
tA

K
D

m
d
iv

A
K

D
m

d
iv

2
A

K
D

m
e
ta

p
h
o
n
A

K
D

m
e
ta

p
h
2
A

K
D

n
m

o
2
A

K
D

n
s
v
A

K
D

n
th

o
n
e
A

K
D

p
ri
m

e
s
A

K
D

rl
e
A

K
D

rl
e
2
A

K
D

rl
e
3
A

K
D

s
c
h
e
d
rA

K
D

s
c
s
A

K
D

s
d
y
n
4
A

K
D

te
s
tf
o
rA

K
D

te
s
ti
n
d
x
A

K
D

te
s
tl
c
v
A

K
D

tj
c
k
A

K
D

tj
c
k
rb

e
A

K
D

tj
c
k
2
A

K
D

tj
k
c
A

K
D

tj
v
2
1
A

K
D

tj
v
2
2
A

K
D

to
m

c
a
tv

A
K

D
to

m
c
a
tv

2
A

K
D

u
la

m
A

K
D

u
n
ir
a
n
d
A

K
D

u
n
ir
a
n
d
3
A

K
D

u
p
g
ra

d
e
B

o
o
lA

K
D

u
p
g
ra

d
e
C

h
a
rA

K
D

u
p
g
ra

d
e
H

IM
A

K
D

u
p
g
ra

d
e
In

tV
e
c
A

K
D

u
p
g
ra

d
e
P

V
A

K
D

w
a
v
e
rA

K
D

R
e
la

ti
v
e
 E

x
e
c
u
ti
o
n
 T

im
e
 (

R
1
2
.1

.0
 /
 R

1
2
.0

.5
)

Benchmark name

Dyalog APL 12.0.5 vs. 12.1.0 CPU Time Performance

Lower is better

◮ Inner product speedups (ipdd, ipbd, mconv, waver)
◮ Grade speedups (downgradePV, upgradeHIM, upgradeIntVec)
◮ Generally, decent improvement across the board
◮ A few losers (nsv, csbench), to keep implementers humble

Robert Bernecky Astounding Performance Looms!

.

Compiled Array Languages

◮ SAC: Research Array language: Extended functional C
◮ Language research projects
◮ Serial performance projects (AWLF, WLF. . .)
◮ Parallel performance projects
◮ About 15 people working on compiler now
◮ Compiler undergoing major refactoring (function spine, SAA

opts)
◮ APEX: Research compiler: Extended flat APL, generates SAC

or SISAL
◮ Fortran 9X: Fortran 77 with array extensions

Robert Bernecky Astounding Performance Looms!

.

Signal Processing

LOGD2: Acoustic signal shaping, delta modulation, first-difference
◮ Dyalog APL diff function

diff←{⍵-¯1⌽⍵}

◮ Fortran 95 diff function
subroutine diff(wv,siz)
wv = wv - eoshift(wv,-1)
return & end

◮ Fortran 77 diff function
subroutine diff(wv,siz)
double precision wv(1),t,t2
integer siz,i
do 6 i= siz,2,-1

6 wv(i) = wv(i) - wv(i-1)
return & end

Robert Bernecky Astounding Performance Looms!

.

Signal Processing

LOGD2: Acoustic signal shaping, delta modulation, first-difference
◮ Dyalog APL diff function

diff←{⍵-¯1⌽⍵}
◮ Fortran 95 diff function

subroutine diff(wv,siz)
wv = wv - eoshift(wv,-1)
return & end

◮ Fortran 77 diff function
subroutine diff(wv,siz)
double precision wv(1),t,t2
integer siz,i
do 6 i= siz,2,-1

6 wv(i) = wv(i) - wv(i-1)
return & end

Robert Bernecky Astounding Performance Looms!

.

Signal Processing

LOGD2: Acoustic signal shaping, delta modulation, first-difference
◮ Dyalog APL diff function

diff←{⍵-¯1⌽⍵}
◮ Fortran 95 diff function

subroutine diff(wv,siz)
wv = wv - eoshift(wv,-1)
return & end

◮ Fortran 77 diff function
subroutine diff(wv,siz)
double precision wv(1),t,t2
integer siz,i
do 6 i= siz,2,-1

6 wv(i) = wv(i) - wv(i-1)
return & end

Robert Bernecky Astounding Performance Looms!

.

APEX/SAC Functional Array Language Serial Performance

LOGD2: Acoustic signal shaping, delta modulation, first-difference

Interpreted APL

Fortran 95

Fortran 77

APEX/SaC−compiled APL

 0x

 1x

 2x

 3x

 4x

 5x

 6x

 7x

 8x

lo
g

d
2

S
er

ia
l

S
p

ee
d

u
p

,
re

la
ti

v
e

to
 i

n
te

rp
re

te
d

 A
P

L

Benchmark

Serial Functional Array Program Performance (APEX/SaC)

1,985msec
1,493msec

433msec

295msec

Robert Bernecky Astounding Performance Looms!

.

Compiled APEX Performance

◮ APL source code for logd2:
main: +/logderiv 0.5+⍳⍵
logderiv: ¯50⌈50⌊50×(diff2 ⍵)÷⍵+0.01
diff2: ⍵-0,¯1↓⍵

◮ SaC AKS With-Loop Folding (WLF) - Sven-Bodo Scholz
◮ The above code folds into ONE parallel with-loop
◮ With Symbiotic Expressions & Algebraic WLF, also handles

AKD arrays
◮ BENEFIT: Abstract expressionism.

Robert Bernecky Astounding Performance Looms!

.

Compiled APEX Performance

◮ APL source code for logd2:
main: +/logderiv 0.5+⍳⍵
logderiv: ¯50⌈50⌊50×(diff2 ⍵)÷⍵+0.01
diff2: ⍵-0,¯1↓⍵

◮ SaC AKS With-Loop Folding (WLF) - Sven-Bodo Scholz

◮ The above code folds into ONE parallel with-loop
◮ With Symbiotic Expressions & Algebraic WLF, also handles

AKD arrays
◮ BENEFIT: Abstract expressionism.

Robert Bernecky Astounding Performance Looms!

.

Compiled APEX Performance

◮ APL source code for logd2:
main: +/logderiv 0.5+⍳⍵
logderiv: ¯50⌈50⌊50×(diff2 ⍵)÷⍵+0.01
diff2: ⍵-0,¯1↓⍵

◮ SaC AKS With-Loop Folding (WLF) - Sven-Bodo Scholz
◮ The above code folds into ONE parallel with-loop

◮ With Symbiotic Expressions & Algebraic WLF, also handles
AKD arrays

◮ BENEFIT: Abstract expressionism.

Robert Bernecky Astounding Performance Looms!

.

Compiled APEX Performance

◮ APL source code for logd2:
main: +/logderiv 0.5+⍳⍵
logderiv: ¯50⌈50⌊50×(diff2 ⍵)÷⍵+0.01
diff2: ⍵-0,¯1↓⍵

◮ SaC AKS With-Loop Folding (WLF) - Sven-Bodo Scholz
◮ The above code folds into ONE parallel with-loop
◮ With Symbiotic Expressions & Algebraic WLF, also handles

AKD arrays

◮ BENEFIT: Abstract expressionism.

Robert Bernecky Astounding Performance Looms!

.

Compiled APEX Performance

◮ APL source code for logd2:
main: +/logderiv 0.5+⍳⍵
logderiv: ¯50⌈50⌊50×(diff2 ⍵)÷⍵+0.01
diff2: ⍵-0,¯1↓⍵

◮ SaC AKS With-Loop Folding (WLF) - Sven-Bodo Scholz
◮ The above code folds into ONE parallel with-loop
◮ With Symbiotic Expressions & Algebraic WLF, also handles

AKD arrays
◮ BENEFIT: Abstract expressionism.

Robert Bernecky Astounding Performance Looms!

.

APL Reduction

◮ +/⍳N

◮ Generated code includes subtract - reduction order
◮ +/⌽⍳N
◮ Generated code has NO subtract, no temps
◮ This is NOT idiom detection!

Robert Bernecky Astounding Performance Looms!

.

APL Reduction

◮ +/⍳N
◮ Generated code includes subtract - reduction order

◮ +/⌽⍳N
◮ Generated code has NO subtract, no temps
◮ This is NOT idiom detection!

Robert Bernecky Astounding Performance Looms!

.

APL Reduction

◮ +/⍳N
◮ Generated code includes subtract - reduction order
◮ +/⌽⍳N

◮ Generated code has NO subtract, no temps
◮ This is NOT idiom detection!

Robert Bernecky Astounding Performance Looms!

.

APL Reduction

◮ +/⍳N
◮ Generated code includes subtract - reduction order
◮ +/⌽⍳N
◮ Generated code has NO subtract, no temps

◮ This is NOT idiom detection!

Robert Bernecky Astounding Performance Looms!

.

APL Reduction

◮ +/⍳N
◮ Generated code includes subtract - reduction order
◮ +/⌽⍳N
◮ Generated code has NO subtract, no temps
◮ This is NOT idiom detection!

Robert Bernecky Astounding Performance Looms!

.

Finite Element Analysis - 2D Jacobi Relaxation
double[.,.] relax(double[.,.] A) {
m = shape(A)[0];
n = shape(A)[1];
B = rotate(0, 1, A) + rotate(0, -1, A) +

rotate(1, 1, A) + rotate(1, -1, A);
upperA = take([1,n], A);
lowerA = drop([m-1,0], A);
leftA = drop([1,0], take([m-1,1], A));
rightA = take([m-2,1], drop([1,n-1], A));
innerB = take([m-2,n-2], drop([1,1], B));
middle = cat(leftA, cat(innerB, rightA));
result = upperA ++ middle ++ lowerA;
return(result); }
◮ SAC function

◮ This compiles into two data-parallel loops:
◮ It should compile into one loop, but not this week

Robert Bernecky Astounding Performance Looms!

.

Finite Element Analysis - 2D Jacobi Relaxation
double[.,.] relax(double[.,.] A) {
m = shape(A)[0];
n = shape(A)[1];
B = rotate(0, 1, A) + rotate(0, -1, A) +

rotate(1, 1, A) + rotate(1, -1, A);
upperA = take([1,n], A);
lowerA = drop([m-1,0], A);
leftA = drop([1,0], take([m-1,1], A));
rightA = take([m-2,1], drop([1,n-1], A));
innerB = take([m-2,n-2], drop([1,1], B));
middle = cat(leftA, cat(innerB, rightA));
result = upperA ++ middle ++ lowerA;
return(result); }
◮ SAC function
◮ This compiles into two data-parallel loops:

◮ It should compile into one loop, but not this week

Robert Bernecky Astounding Performance Looms!

.

Finite Element Analysis - 2D Jacobi Relaxation
double[.,.] relax(double[.,.] A) {
m = shape(A)[0];
n = shape(A)[1];
B = rotate(0, 1, A) + rotate(0, -1, A) +

rotate(1, 1, A) + rotate(1, -1, A);
upperA = take([1,n], A);
lowerA = drop([m-1,0], A);
leftA = drop([1,0], take([m-1,1], A));
rightA = take([m-2,1], drop([1,n-1], A));
innerB = take([m-2,n-2], drop([1,1], B));
middle = cat(leftA, cat(innerB, rightA));
result = upperA ++ middle ++ lowerA;
return(result); }
◮ SAC function
◮ This compiles into two data-parallel loops:
◮ It should compile into one loop, but not this week

Robert Bernecky Astounding Performance Looms!

.

APEX Performance vs. APL

 0.1

 1

 10

 100

 1,000

b
u
ild

v
A

K
S

b
u
ild

v
fA

K
S

b
u
ild

v
2
A

K
S

c
o
m

p
io

ta
A

K
S

c
o
m

p
io

ta
d
A

K
S

c
rc

A
K

S
c
rc

2
A

K
S

c
s
b
e
n
c
h
A

K
S

d
o
w

n
g
ra

d
e
P

V
A

K
S

fd
A

K
S

g
e
w

lf
A

K
S

h
is

tg
ra

d
e
A

K
S

h
is

tl
p
A

K
S

h
is

to
p
A

K
S

h
is

to
p
fA

K
S

io
ta

n
A

K
S

ip
a
p
e
A

K
S

ip
b
b
A

K
S

ip
o
p
n
e
A

K
S

ip
p
lu

s
a
n
d
A

K
S

llt
o
p
A

K
S

lo
g
d
2
A

K
S

lo
g
d
3
A

K
S

lo
g
d
4
A

K
S

lo
o
p
fs

A
K

S
lo

o
p
fv

A
K

S
lo

o
p
is

A
K

S
m

c
o
n
v
A

K
S

m
c
o
n
v
o
u
tA

K
S

m
d
iv

2
A

K
S

n
s
v
A

K
S

n
th

o
n
e
A

K
S

p
ri
m

e
s
A

K
S

rl
e
A

K
S

rl
e
2
A

K
S

rl
e
3
A

K
S

s
c
h
e
d
rA

K
S

s
c
s
A

K
S

s
d
y
n
4
A

K
S

te
s
tf
o
rA

K
S

te
s
ti
n
d
x
A

K
S

te
s
tl
c
v
A

K
S

u
n
ir
a
n
d
A

K
S

u
n
ir
a
n
d
3
A

K
S

u
p
g
ra

d
e
B

o
o
lA

K
S

u
p
g
ra

d
e
C

h
a
rA

K
S

u
p
g
ra

d
e
H

IM
A

K
S

u
p
g
ra

d
e
In

tV
e
c
A

K
S

u
p
g
ra

d
e
P

V
A

K
S

S
p
e
e
d
u
p
 (

A
P

L
/A

P
E

X
 w

/A
W

L
F

)

Benchmark name

Dyalog APL 12.1.0 vs. APEX CPU Time Performance

Higher is better for APEX WLPROP disabled

◮ Highly iterative code (dynamic programming scs, sdyn4)
performs very well.

◮ FOR-loops (buildv, histgrade) & with-loops within
conditionals need help.

Robert Bernecky Astounding Performance Looms!

.

APEX Cache Performance
◮ L2 cache miss rates
◮ AKS - Arrays of Known Shape (Fortran 77)
◮ AKD - Arrays of Known Dimension (APL)
◮ WLF - With-Loop Folding (AKS-only)
◮ AWLF - Algebraic With-Loop Folding (AKS and AKD)

WLF

AWLF

 0.1

 1

 10

 100

 1,000

b
u
ild

v
b
u
ild

v
f

b
u
ild

v
2

c
o
m

p
io

ta
c
o
m

p
io

ta
d

c
rc

c
rc

2
c
s
b
e
n
c
h

d
o
w

n
g
ra

d
e
P

V fd
g
e
w

lf
h
is

tg
ra

d
e

h
is

tl
p

h
is

to
p

h
is

to
p
f

io
ta

n
ip

a
p
e

ip
b
b

ip
o
p
n
e

ip
p
lu

s
a
n
d

llt
o
p

lo
g
d
2

lo
g
d
3

lo
g
d
4

lo
o
p
fs

lo
o
p
fv

lo
o
p
is

m
c
o
n
v

m
c
o
n
v
o
u
t

m
d
iv

2
n
s
v

n
th

o
n
e

p
ri
m

e
s

p
ri
m

e
s
2

p
ri
m

e
s
3

rl
e

rl
e
2

rl
e
3

rl
e
4

s
c
h
e
d
r

s
c
s

s
d
y
n
4

te
s
tf
o
r

te
s
ti
n
d
x

te
s
tl
c
v

u
n
ir
a
n
d

u
n
ir
a
n
d
3

u
p
g
ra

d
e
B

o
o
l

u
p
g
ra

d
e
C

h
a
r

u
p
g
ra

d
e
H

IM
u
p
g
ra

d
e
In

tV
e
c

u
p
g
ra

d
e
P

VL
2
 D

a
ta

 C
a
c
h
e
 M

is
s
 R

a
ti
o
(%

):
 A

K
D

/A
K

S

Benchmark name

AKD/AKS L2 Data Cache Miss Ratios

Lower is better for AWLF

Robert Bernecky Astounding Performance Looms!

.

AWLF and Symbiotic Expressions

◮ Problem: Optimizers have to perform algebra

◮ E.g., AWLF array index set intersection calculation
◮ Traditional solution I: Limit problem to simple cases
◮ Traditional solution II: Use SMT solver - Yices, Omega

Calculator
◮ Symbiotic Expressions: Glue problem onto program's AST
◮ Abstract Syntax Tree gets lamprey-like code hanging from it
◮ Compiler's optimizers (CF, AL, AS, DL, CSE, CVP . . .)

simplify
◮ If suitably simplified, answer allows optimization to proceed
◮ Unlike the lamprey, both compiler and program benefit

Robert Bernecky Astounding Performance Looms!

.

AWLF and Symbiotic Expressions

◮ Problem: Optimizers have to perform algebra
◮ E.g., AWLF array index set intersection calculation

◮ Traditional solution I: Limit problem to simple cases
◮ Traditional solution II: Use SMT solver - Yices, Omega

Calculator
◮ Symbiotic Expressions: Glue problem onto program's AST
◮ Abstract Syntax Tree gets lamprey-like code hanging from it
◮ Compiler's optimizers (CF, AL, AS, DL, CSE, CVP . . .)

simplify
◮ If suitably simplified, answer allows optimization to proceed
◮ Unlike the lamprey, both compiler and program benefit

Robert Bernecky Astounding Performance Looms!

.

AWLF and Symbiotic Expressions

◮ Problem: Optimizers have to perform algebra
◮ E.g., AWLF array index set intersection calculation
◮ Traditional solution I: Limit problem to simple cases

◮ Traditional solution II: Use SMT solver - Yices, Omega
Calculator

◮ Symbiotic Expressions: Glue problem onto program's AST
◮ Abstract Syntax Tree gets lamprey-like code hanging from it
◮ Compiler's optimizers (CF, AL, AS, DL, CSE, CVP . . .)

simplify
◮ If suitably simplified, answer allows optimization to proceed
◮ Unlike the lamprey, both compiler and program benefit

Robert Bernecky Astounding Performance Looms!

.

AWLF and Symbiotic Expressions

◮ Problem: Optimizers have to perform algebra
◮ E.g., AWLF array index set intersection calculation
◮ Traditional solution I: Limit problem to simple cases
◮ Traditional solution II: Use SMT solver - Yices, Omega

Calculator

◮ Symbiotic Expressions: Glue problem onto program's AST
◮ Abstract Syntax Tree gets lamprey-like code hanging from it
◮ Compiler's optimizers (CF, AL, AS, DL, CSE, CVP . . .)

simplify
◮ If suitably simplified, answer allows optimization to proceed
◮ Unlike the lamprey, both compiler and program benefit

Robert Bernecky Astounding Performance Looms!

.

AWLF and Symbiotic Expressions

◮ Problem: Optimizers have to perform algebra
◮ E.g., AWLF array index set intersection calculation
◮ Traditional solution I: Limit problem to simple cases
◮ Traditional solution II: Use SMT solver - Yices, Omega

Calculator
◮ Symbiotic Expressions: Glue problem onto program's AST

◮ Abstract Syntax Tree gets lamprey-like code hanging from it
◮ Compiler's optimizers (CF, AL, AS, DL, CSE, CVP . . .)

simplify
◮ If suitably simplified, answer allows optimization to proceed
◮ Unlike the lamprey, both compiler and program benefit

Robert Bernecky Astounding Performance Looms!

.

AWLF and Symbiotic Expressions

◮ Problem: Optimizers have to perform algebra
◮ E.g., AWLF array index set intersection calculation
◮ Traditional solution I: Limit problem to simple cases
◮ Traditional solution II: Use SMT solver - Yices, Omega

Calculator
◮ Symbiotic Expressions: Glue problem onto program's AST
◮ Abstract Syntax Tree gets lamprey-like code hanging from it

◮ Compiler's optimizers (CF, AL, AS, DL, CSE, CVP . . .)
simplify

◮ If suitably simplified, answer allows optimization to proceed
◮ Unlike the lamprey, both compiler and program benefit

Robert Bernecky Astounding Performance Looms!

.

AWLF and Symbiotic Expressions

◮ Problem: Optimizers have to perform algebra
◮ E.g., AWLF array index set intersection calculation
◮ Traditional solution I: Limit problem to simple cases
◮ Traditional solution II: Use SMT solver - Yices, Omega

Calculator
◮ Symbiotic Expressions: Glue problem onto program's AST
◮ Abstract Syntax Tree gets lamprey-like code hanging from it
◮ Compiler's optimizers (CF, AL, AS, DL, CSE, CVP . . .)

simplify

◮ If suitably simplified, answer allows optimization to proceed
◮ Unlike the lamprey, both compiler and program benefit

Robert Bernecky Astounding Performance Looms!

.

AWLF and Symbiotic Expressions

◮ Problem: Optimizers have to perform algebra
◮ E.g., AWLF array index set intersection calculation
◮ Traditional solution I: Limit problem to simple cases
◮ Traditional solution II: Use SMT solver - Yices, Omega

Calculator
◮ Symbiotic Expressions: Glue problem onto program's AST
◮ Abstract Syntax Tree gets lamprey-like code hanging from it
◮ Compiler's optimizers (CF, AL, AS, DL, CSE, CVP . . .)

simplify
◮ If suitably simplified, answer allows optimization to proceed

◮ Unlike the lamprey, both compiler and program benefit

Robert Bernecky Astounding Performance Looms!

.

AWLF and Symbiotic Expressions

◮ Problem: Optimizers have to perform algebra
◮ E.g., AWLF array index set intersection calculation
◮ Traditional solution I: Limit problem to simple cases
◮ Traditional solution II: Use SMT solver - Yices, Omega

Calculator
◮ Symbiotic Expressions: Glue problem onto program's AST
◮ Abstract Syntax Tree gets lamprey-like code hanging from it
◮ Compiler's optimizers (CF, AL, AS, DL, CSE, CVP . . .)

simplify
◮ If suitably simplified, answer allows optimization to proceed
◮ Unlike the lamprey, both compiler and program benefit

Robert Bernecky Astounding Performance Looms!

.

Multi-thread APEX Performance on Opteron

nothread

mt1

mt2

mt3

mt4

 1x

 1.2x

 1.4x

 1.6x

 1.8x

 2x

 2.2x

 2.4x

 2.6x

 2.8x

ip
d

d

lo
g

d

m
co

n
v

S
p

ee
d

u
p

,
re

la
ti

v
e

to
 n

o
 t

h
re

ad
s

threads

APEX/SAC Speedup on multi−core Opteron 275

0.93

1.53

1.91

2.25

0.97

1.49

1.96

2.13

1.00

1.72

2.3

2.65

◮ Matrix product (ipdd)

◮ Acoustic signal processing (logd)
◮ Geophysics 1-D convolution (mconv)
◮ Today, logd2 about 12X faster than APL on a 4-core box
◮ There are more optimizations to come. Soon.

Robert Bernecky Astounding Performance Looms!

.

Multi-thread APEX Performance on Opteron

nothread

mt1

mt2

mt3

mt4

 1x

 1.2x

 1.4x

 1.6x

 1.8x

 2x

 2.2x

 2.4x

 2.6x

 2.8x

ip
d

d

lo
g

d

m
co

n
v

S
p

ee
d

u
p

,
re

la
ti

v
e

to
 n

o
 t

h
re

ad
s

threads

APEX/SAC Speedup on multi−core Opteron 275

0.93

1.53

1.91

2.25

0.97

1.49

1.96

2.13

1.00

1.72

2.3

2.65

◮ Matrix product (ipdd)
◮ Acoustic signal processing (logd)

◮ Geophysics 1-D convolution (mconv)
◮ Today, logd2 about 12X faster than APL on a 4-core box
◮ There are more optimizations to come. Soon.

Robert Bernecky Astounding Performance Looms!

.

Multi-thread APEX Performance on Opteron

nothread

mt1

mt2

mt3

mt4

 1x

 1.2x

 1.4x

 1.6x

 1.8x

 2x

 2.2x

 2.4x

 2.6x

 2.8x

ip
d

d

lo
g

d

m
co

n
v

S
p

ee
d

u
p

,
re

la
ti

v
e

to
 n

o
 t

h
re

ad
s

threads

APEX/SAC Speedup on multi−core Opteron 275

0.93

1.53

1.91

2.25

0.97

1.49

1.96

2.13

1.00

1.72

2.3

2.65

◮ Matrix product (ipdd)
◮ Acoustic signal processing (logd)
◮ Geophysics 1-D convolution (mconv)

◮ Today, logd2 about 12X faster than APL on a 4-core box
◮ There are more optimizations to come. Soon.

Robert Bernecky Astounding Performance Looms!

.

Multi-thread APEX Performance on Opteron

nothread

mt1

mt2

mt3

mt4

 1x

 1.2x

 1.4x

 1.6x

 1.8x

 2x

 2.2x

 2.4x

 2.6x

 2.8x

ip
d

d

lo
g

d

m
co

n
v

S
p

ee
d

u
p

,
re

la
ti

v
e

to
 n

o
 t

h
re

ad
s

threads

APEX/SAC Speedup on multi−core Opteron 275

0.93

1.53

1.91

2.25

0.97

1.49

1.96

2.13

1.00

1.72

2.3

2.65

◮ Matrix product (ipdd)
◮ Acoustic signal processing (logd)
◮ Geophysics 1-D convolution (mconv)
◮ Today, logd2 about 12X faster than APL on a 4-core box

◮ There are more optimizations to come. Soon.

Robert Bernecky Astounding Performance Looms!

.

Multi-thread APEX Performance on Opteron

nothread

mt1

mt2

mt3

mt4

 1x

 1.2x

 1.4x

 1.6x

 1.8x

 2x

 2.2x

 2.4x

 2.6x

 2.8x

ip
d

d

lo
g

d

m
co

n
v

S
p

ee
d

u
p

,
re

la
ti

v
e

to
 n

o
 t

h
re

ad
s

threads

APEX/SAC Speedup on multi−core Opteron 275

0.93

1.53

1.91

2.25

0.97

1.49

1.96

2.13

1.00

1.72

2.3

2.65

◮ Matrix product (ipdd)
◮ Acoustic signal processing (logd)
◮ Geophysics 1-D convolution (mconv)
◮ Today, logd2 about 12X faster than APL on a 4-core box
◮ There are more optimizations to come. Soon.

Robert Bernecky Astounding Performance Looms!

.

Computational Fluid Dynamics With CUDA Back End

 0

 10

 20

 30

 40

 50

 60

 70

 256 384 512 640 768 896 1024 1152 1280 1408 1536

Sp
ee

du
p

Problem Size

LatticeBoltzmann CUDA vs. SaC Speedups (8800GT)
10 Steps
25 Steps
50 Steps

100 Steps
200 Steps

◮ Two-dimensional flow using Lattice Boltzmann method
◮ MuTC project in EU, UK

◮ Single-tick thread initiation

◮ Simulated linear speedup with 50K threads
◮ Prototype SAC MuTC back-end exists

Robert Bernecky Astounding Performance Looms!

.

Computational Fluid Dynamics With CUDA Back End

 0

 10

 20

 30

 40

 50

 60

 70

 256 384 512 640 768 896 1024 1152 1280 1408 1536

Sp
ee

du
p

Problem Size

LatticeBoltzmann CUDA vs. SaC Speedups (8800GT)
10 Steps
25 Steps
50 Steps

100 Steps
200 Steps

◮ Two-dimensional flow using Lattice Boltzmann method
◮ MuTC project in EU, UK

◮ Single-tick thread initiation
◮ Simulated linear speedup with 50K threads

◮ Prototype SAC MuTC back-end exists

Robert Bernecky Astounding Performance Looms!

.

Computational Fluid Dynamics With CUDA Back End

 0

 10

 20

 30

 40

 50

 60

 70

 256 384 512 640 768 896 1024 1152 1280 1408 1536

Sp
ee

du
p

Problem Size

LatticeBoltzmann CUDA vs. SaC Speedups (8800GT)
10 Steps
25 Steps
50 Steps

100 Steps
200 Steps

◮ Two-dimensional flow using Lattice Boltzmann method
◮ MuTC project in EU, UK

◮ Single-tick thread initiation
◮ Simulated linear speedup with 50K threads
◮ Prototype SAC MuTC back-end exists

Robert Bernecky Astounding Performance Looms!

.

Bridging the Interpreter-Compiler Performance Gap

◮ Today: ⎕na calls to APEX
◮ access to optimized code

◮ multi-core execution
◮ access to CUDA
◮ Some overhead due to array copying across interface
◮ −→ Slower for very small computations

Robert Bernecky Astounding Performance Looms!

.

Bridging the Interpreter-Compiler Performance Gap

◮ Today: ⎕na calls to APEX
◮ access to optimized code

◮ multi-core execution

◮ access to CUDA
◮ Some overhead due to array copying across interface
◮ −→ Slower for very small computations

Robert Bernecky Astounding Performance Looms!

.

Bridging the Interpreter-Compiler Performance Gap

◮ Today: ⎕na calls to APEX
◮ access to optimized code

◮ multi-core execution
◮ access to CUDA

◮ Some overhead due to array copying across interface
◮ −→ Slower for very small computations

Robert Bernecky Astounding Performance Looms!

.

Bridging the Interpreter-Compiler Performance Gap

◮ Today: ⎕na calls to APEX
◮ access to optimized code

◮ multi-core execution
◮ access to CUDA
◮ Some overhead due to array copying across interface

◮ −→ Slower for very small computations

Robert Bernecky Astounding Performance Looms!

.

Bridging the Interpreter-Compiler Performance Gap

◮ Today: ⎕na calls to APEX
◮ access to optimized code

◮ multi-core execution
◮ access to CUDA
◮ Some overhead due to array copying across interface
◮ −→ Slower for very small computations

Robert Bernecky Astounding Performance Looms!

.

Bridging the Interpreter-Compiler Performance Gap

◮ Tomorrow:
◮ APEX performance improvements continue (2X-20X)

◮ Fastpath ⎕na call from APL to compiled code
◮ Reduce and/or eliminate array copying across interface

◮ JIT compiler for interpreted APL:
◮ A + B × ⍳ C −→ One parallel loop, no temp arrays
◮ Reduce "each" hell: less memory fragmentation, much faster
◮ Perhaps compile some class of dynamic functions
◮ Compiled function cache

Robert Bernecky Astounding Performance Looms!

.

Bridging the Interpreter-Compiler Performance Gap

◮ Tomorrow:
◮ APEX performance improvements continue (2X-20X)
◮ Fastpath ⎕na call from APL to compiled code

◮ Reduce and/or eliminate array copying across interface

◮ JIT compiler for interpreted APL:
◮ A + B × ⍳ C −→ One parallel loop, no temp arrays
◮ Reduce "each" hell: less memory fragmentation, much faster
◮ Perhaps compile some class of dynamic functions
◮ Compiled function cache

Robert Bernecky Astounding Performance Looms!

.

Bridging the Interpreter-Compiler Performance Gap

◮ Tomorrow:
◮ APEX performance improvements continue (2X-20X)
◮ Fastpath ⎕na call from APL to compiled code

◮ Reduce and/or eliminate array copying across interface
◮ JIT compiler for interpreted APL:

◮ A + B × ⍳ C −→ One parallel loop, no temp arrays
◮ Reduce "each" hell: less memory fragmentation, much faster
◮ Perhaps compile some class of dynamic functions
◮ Compiled function cache

Robert Bernecky Astounding Performance Looms!

.

Bridging the Interpreter-Compiler Performance Gap

◮ Day after tomorrow:
◮ Possible APEX compiler extensions

◮ Nested arrays, structures
◮ Vendor-specific features, e.g., dynamic functions

◮ Optimistic Algebraic With-Loop Folding

Robert Bernecky Astounding Performance Looms!

.

Bridging the Interpreter-Compiler Performance Gap

◮ Day after tomorrow:
◮ Possible APEX compiler extensions

◮ Nested arrays, structures

◮ Vendor-specific features, e.g., dynamic functions
◮ Optimistic Algebraic With-Loop Folding

Robert Bernecky Astounding Performance Looms!

.

Bridging the Interpreter-Compiler Performance Gap

◮ Day after tomorrow:
◮ Possible APEX compiler extensions

◮ Nested arrays, structures
◮ Vendor-specific features, e.g., dynamic functions

◮ Optimistic Algebraic With-Loop Folding

Robert Bernecky Astounding Performance Looms!

.

Bridging the Interpreter-Compiler Performance Gap

◮ Day after tomorrow:
◮ Possible APEX compiler extensions

◮ Nested arrays, structures
◮ Vendor-specific features, e.g., dynamic functions

◮ Optimistic Algebraic With-Loop Folding

Robert Bernecky Astounding Performance Looms!

.

Joining Forces Could be Neat

◮ Traditional approach: One compiler for each language, each
target system

◮ The GCC approach:
◮ Compile F77, C, C++, F95 to common intermediate language

(IL)

◮ Perform optimizations on that IL.
◮ Generate code from the IL for specific target machine.

◮ Our approach:

◮ Compile APL, J, A+, . . . to common IL.
◮ Perform optimizations, perhaps SAC-based, on that IL.
◮ Generate code from the IL for specific target machine.
◮ Need consortium of array language vendors, to produce:
◮ New Extensible Array Translator:
◮ NEAT!

Robert Bernecky Astounding Performance Looms!

.

Joining Forces Could be Neat

◮ Traditional approach: One compiler for each language, each
target system

◮ The GCC approach:
◮ Compile F77, C, C++, F95 to common intermediate language

(IL)
◮ Perform optimizations on that IL.

◮ Generate code from the IL for specific target machine.

◮ Our approach:

◮ Compile APL, J, A+, . . . to common IL.
◮ Perform optimizations, perhaps SAC-based, on that IL.
◮ Generate code from the IL for specific target machine.
◮ Need consortium of array language vendors, to produce:
◮ New Extensible Array Translator:
◮ NEAT!

Robert Bernecky Astounding Performance Looms!

.

Joining Forces Could be Neat

◮ Traditional approach: One compiler for each language, each
target system

◮ The GCC approach:
◮ Compile F77, C, C++, F95 to common intermediate language

(IL)
◮ Perform optimizations on that IL.
◮ Generate code from the IL for specific target machine.

◮ Our approach:

◮ Compile APL, J, A+, . . . to common IL.
◮ Perform optimizations, perhaps SAC-based, on that IL.
◮ Generate code from the IL for specific target machine.
◮ Need consortium of array language vendors, to produce:
◮ New Extensible Array Translator:
◮ NEAT!

Robert Bernecky Astounding Performance Looms!

.

Joining Forces Could be Neat

◮ Traditional approach: One compiler for each language, each
target system

◮ The GCC approach:
◮ Compile F77, C, C++, F95 to common intermediate language

(IL)
◮ Perform optimizations on that IL.
◮ Generate code from the IL for specific target machine.

◮ Our approach:
◮ Compile APL, J, A+, . . . to common IL.

◮ Perform optimizations, perhaps SAC-based, on that IL.
◮ Generate code from the IL for specific target machine.
◮ Need consortium of array language vendors, to produce:
◮ New Extensible Array Translator:
◮ NEAT!

Robert Bernecky Astounding Performance Looms!

.

Joining Forces Could be Neat

◮ Traditional approach: One compiler for each language, each
target system

◮ The GCC approach:
◮ Compile F77, C, C++, F95 to common intermediate language

(IL)
◮ Perform optimizations on that IL.
◮ Generate code from the IL for specific target machine.

◮ Our approach:
◮ Compile APL, J, A+, . . . to common IL.
◮ Perform optimizations, perhaps SAC-based, on that IL.

◮ Generate code from the IL for specific target machine.
◮ Need consortium of array language vendors, to produce:
◮ New Extensible Array Translator:
◮ NEAT!

Robert Bernecky Astounding Performance Looms!

.

Joining Forces Could be Neat

◮ Traditional approach: One compiler for each language, each
target system

◮ The GCC approach:
◮ Compile F77, C, C++, F95 to common intermediate language

(IL)
◮ Perform optimizations on that IL.
◮ Generate code from the IL for specific target machine.

◮ Our approach:
◮ Compile APL, J, A+, . . . to common IL.
◮ Perform optimizations, perhaps SAC-based, on that IL.
◮ Generate code from the IL for specific target machine.

◮ Need consortium of array language vendors, to produce:
◮ New Extensible Array Translator:
◮ NEAT!

Robert Bernecky Astounding Performance Looms!

.

Joining Forces Could be Neat

◮ Traditional approach: One compiler for each language, each
target system

◮ The GCC approach:
◮ Compile F77, C, C++, F95 to common intermediate language

(IL)
◮ Perform optimizations on that IL.
◮ Generate code from the IL for specific target machine.

◮ Our approach:
◮ Compile APL, J, A+, . . . to common IL.
◮ Perform optimizations, perhaps SAC-based, on that IL.
◮ Generate code from the IL for specific target machine.
◮ Need consortium of array language vendors, to produce:

◮ New Extensible Array Translator:
◮ NEAT!

Robert Bernecky Astounding Performance Looms!

.

Joining Forces Could be Neat

◮ Traditional approach: One compiler for each language, each
target system

◮ The GCC approach:
◮ Compile F77, C, C++, F95 to common intermediate language

(IL)
◮ Perform optimizations on that IL.
◮ Generate code from the IL for specific target machine.

◮ Our approach:
◮ Compile APL, J, A+, . . . to common IL.
◮ Perform optimizations, perhaps SAC-based, on that IL.
◮ Generate code from the IL for specific target machine.
◮ Need consortium of array language vendors, to produce:
◮ New Extensible Array Translator:

◮ NEAT!

Robert Bernecky Astounding Performance Looms!

.

Joining Forces Could be Neat

◮ Traditional approach: One compiler for each language, each
target system

◮ The GCC approach:
◮ Compile F77, C, C++, F95 to common intermediate language

(IL)
◮ Perform optimizations on that IL.
◮ Generate code from the IL for specific target machine.

◮ Our approach:
◮ Compile APL, J, A+, . . . to common IL.
◮ Perform optimizations, perhaps SAC-based, on that IL.
◮ Generate code from the IL for specific target machine.
◮ Need consortium of array language vendors, to produce:
◮ New Extensible Array Translator:
◮ NEAT!

Robert Bernecky Astounding Performance Looms!

.

References

Robert Bernecky.
Fortran 90 arrays.
ACM SIGPLAN Notices, 26(2), February 1991.

Robert Bernecky.
The role of APL and J in high-performance computation.
ACM SIGAPL Quote Quad, 24(1):17--32, August 1993.

Robert Bernecky.
APEX: The APL Parallel Executor.
Master's thesis, University of Toronto, 1997.

Robert Bernecky and R.K.W. Hui.
Gerunds and representations.
ACM SIGAPL Quote Quad, 21(4), July 1991.

Sven-Bodo Scholz.
Single Assignment C.
PhD thesis, Christian-Albrechts-Universität zu Kiel, 1996.

S.-B. Scholz.
With-loop-folding in sac--Condensing Consecutive Array Operations.
In C. Clack, K.Hammond, and T. Davie, editors, Implementation of Functional Languages, 9th International
Workshop, IFL'97, St. Andrews, Scotland, UK, September 1997, Selected Papers, volume 1467 of LNCS,
pages 72--92. Springer, 1998.

Robert Bernecky Astounding Performance Looms!

.

Thank you!

Questions?

Robert Bernecky Astounding Performance Looms!

