
Two & Three Part Inventions

Abstract

Investigating the possibilities for generating a larger class of derived functions and operators through
the agency of juxtaposition. For example, the difference between ...

f g w ⍝ which is f(g w)
and

(f g)w ⍝ which isn't

Sixteen two part & sixty-four three part syntactic permutations of
arrays, functions & monadic & dyadic operators.

Earlier this year John Scholes1 put forward three options for how to deal with "trains" of functions
which currently generate SYNTAX ERROR in Dyalog APL.

1. Function arrays.

One of the things emerging aplers tend to try on the assumption that as nearly everything else seems
to work this should as well ...

1 2 3+4 5 6
5 7 9

1 2 3(+×-)4 5 6
5 10 ¯3

1 2 3+4
5 6 7

1 2 3(+×-)4
5 8 ¯1

1+2 3 4
3 4 5

1(+×-)2 3 4
3 3 ¯3

Partially implemented in Dyalog as named functions in arrays of namespaces or methods in arrays of
instances.
Can be done without change to the interpreter through defined operators2.

2. Forks and hooks.

SAX and J have these. Another case of intuitive expectation? ...

 1 2 3 4 5(>∨=)5 4 3 2 1 ⍝ (greater-than or equal)
0 0 1 1 1
 1 2 3 4 5(~<)5 4 3 2 1 ⍝ (not less-than)
0 0 1 1 1

Can be done without change to the interpreter through defined operators3.

3. Currying.

Named after Haskell Curry, and implemented in a number of functional programming languages. We
can specify less than the required number of arguments to a function to produce a resulting function
whose valence is the number of arguments not already supplied. In APL terms this would normally
entail the currying of a dyad with a left argument to produce a monad4. The most
obvious example is ...

 increment←1+
 increment
1+
 increment 3
4

In his experimental FRE interpreter5, John added two features not entirely related to closures. They
were the ability to curry functions by the juxtaposition of an array and a function (a f) or of two
functions (f g).

The first is as above. An example of the second is ...

 index←⍳⍴
 index
⍳⍴
 index 'this'
0 1 2 3

Both these features can be viewed as the elision of the compose "∘" operator.
{
The third use of compose, which juxtaposes a function and an array (f∘⍵)
 decrement←-∘1
 decrement
-∘ 1
 decrement 4
3
cannot be elided as (f ⍵) would run as a monadic call to (f).
 decrement←(- 1)
 decrement
¯1
 decrement 4
¯1 4
}

The derivations on the next page form a logical extrapolation of the FRE extensions deriving ...

Eight Arrays or immediate executions
Four Monadic Functions
Sixteen Ambivalent Functions
One Monadic Operator deriving monadic
Twenty Four Monadic Operators deriving ambivalent
Six Dyadic Operators deriving ambivalent
& Twenty One SYNTAX ERRORS

0
1
2
3
4
5

The codes on the right appear in the derivation table below as "class".

The "calling syntax" of each derivation is how the derived entity would be called. The "internal
syntax" is a dynamic function representation of how the interpreter would be expected to treat it after
the calling syntax is satisfied. They are based on the table of "binding strengths" as defined by Jim
Brown6 and subsequently amended by Dyalog ...

Order of Binding Strengths in Dyalog

vector
bracket
right-operand
left-operand
left-argument
right-argument

binds adjacent data values to form a vector.
binds paired brackets to the entity on their left.
binds a dyadic operator to a function or data on its right.
binds an operator to a function or data on its left.
binds a function to data on its left.
binds a function to data on its right.

This will be seen to be insufficient for our purpose. This is partly because not all bindings are
permitted to stand alone. The "array+function" binding described above is a case in point. This is
merely left-argument binding but where, say, left-operand binding with a monadic operator
produces an assignable function, left-argument binding does not. I am proposing that it should and,
in fact, that all legal bindings be deemed to produce an assignable entity. The class of that entity will
be determined by which of the four possible parameters, (⍺), (⍺⍺), (⍵⍵) & (⍵) it both requires and
lacks.

Even this is insufficient as the juxtaposition of two functions or of anything to the right of a monadic
operator is not in the bindings table. Hence an additional requirement is for a new binding, "weak"

binding, which would bind any two entities that are allowed to be adjacent in a well formed
expression but whose binding is not covered by any other. Weak binding would have to appear as the
penultimate row in the table. This is for two reasons ...

1. Right-argument binding must remain the weakest of all as it is the last thing to occur prior to
execution of the function.

2. Weak binding cannot occur before any other binding except right-argument otherwise the
meaning of a large class of currently well formed expressions would change.

Two and Three Part Inventions

id ← components internal syntax calling syntax class

=
+
=

=
+
=

=
+
=

=
+
+

=

=

=
=

=
+
+

=
+
+

=
+
=

=
=

aa
af
am
ad
fa
ff
fm
fd
ma
mf
mm
md
da
df
dm
dd
aaa
aaf
aam
aad
afa
aff
afm
afd
ama
amf
amm
amd
ada
adf
adm
add
faa
faf
fam
fad
ffa
fff
ffm
ffd
fma
fmf
fmm
fmd
fda
fdf
fdm
fdd
maa
maf
mam
mad
mfa
mff
mfm
mfd
mma
mmf
mmm
mmd
mda
mdf
mdm

←
←
←
←
←
←
←
←
←
←
←
←
←
←
←
←
←
←
←
←
←
←
←
←
←
←
←
←
←
←
←
←
←
←
←
←
←
←
←
←
←
←
←
←
←
←
←
←
←
←
←
←
←
←
←
←
←
←
←
←
←
←
←

arr0 arr1
arr0 fnc1
arr0 mop1
arr0 dop1
fnc0 arr1
fnc0 fnc1
fnc0 mop1
fnc0 dop1
mop0 arr1
mop0 fnc1
mop0 mop1
mop0 dop1
dop0 arr1
dop0 fnc1
dop0 mop1
dop0 dop1
arr0 arr1 arr2
arr0 arr1 fnc2
arr0 arr1 mop2
arr0 arr1 dop2
arr0 fnc1 arr2
arr0 fnc1 fnc2
arr0 fnc1 mop2
arr0 fnc1 dop2
arr0 mop1 arr2
arr0 mop1 fnc2
arr0 mop1 mop2
arr0 mop1 dop2
arr0 dop1 arr2
arr0 dop1 fnc2
arr0 dop1 mop2
arr0 dop1 dop2
fnc0 arr1 arr2
fnc0 arr1 fnc2
fnc0 arr1 mop2
fnc0 arr1 dop2
fnc0 fnc1 arr2
fnc0 fnc1 fnc2
fnc0 fnc1 mop2
fnc0 fnc1 dop2
fnc0 mop1 arr2
fnc0 mop1 fnc2
fnc0 mop1 mop2
fnc0 mop1 dop2
fnc0 dop1 arr2
fnc0 dop1 fnc2
fnc0 dop1 mop2
fnc0 dop1 dop2
mop0 arr1 arr2
mop0 arr1 fnc2
mop0 arr1 mop2
mop0 arr1 dop2
mop0 fnc1 arr2
mop0 fnc1 fnc2
mop0 fnc1 mop2
mop0 fnc1 dop2
mop0 mop1 arr2
mop0 mop1 fnc2
mop0 mop1 mop2
mop0 mop1 dop2
mop0 dop1 arr2
mop0 dop1 fnc2
mop0 dop1 mop2

⋄
⋄
⋄
⋄
⋄
⋄
⋄
⋄
⋄
⋄
⋄
⋄
⋄
⋄
⋄
⋄
⋄
⋄
⋄
⋄
⋄
⋄
⋄
⋄
⋄
⋄
⋄
⋄
⋄
⋄
⋄
⋄
⋄
⋄
⋄
⋄
⋄
⋄
⋄
⋄
⋄
⋄
⋄
⋄
⋄
⋄
⋄
⋄
⋄
⋄
⋄
⋄
⋄
⋄
⋄
⋄
⋄
⋄
⋄
⋄
⋄
⋄
⋄

{arr0 fnc1 ⍵}
{⍺←{⍵} ⋄ ⍺(arr0 mop1)⍵}
{⍺←{⍵} ⋄ ⍺(arr0 dop1 ⍺⍺)⍵}

{⍺←{⍵} ⋄ ⍺ fnc0 fnc1 ⍵}
{⍺←{⍵} ⋄ ⍺ fnc0 mop1 ⍵}
{⍺←{⍵} ⋄ ⍺(fnc0 dop1 ⍺⍺)⍵}
SYNTAX ERROR
{⍺←{⍵} ⋄ ⍺(⍺⍺ mop0 fnc1)⍵}
{⍺←{⍵} ⋄ ⍺(⍺⍺ mop0 mop1)⍵}
{⍺←{⍵} ⋄ ⍺(⍺⍺ mop0 dop1 ⍵⍵)⍵}
{⍺←{⍵} ⋄ ⍺(⍺⍺ dop0 arr1)⍵}
{⍺←{⍵} ⋄ ⍺(⍺⍺ dop0 fnc1)⍵}
SYNTAX ERROR
SYNTAX ERROR

{arr0 arr1 fnc2 ⍵}
{⍺←{⍵} ⋄ ⍺(arr0 arr1 mop2)⍵}
{⍺←{⍵} ⋄ ⍺(arr0 arr1 dop2 ⍺⍺)⍵}

{arr0 fnc1 fnc2 ⍵}
{arr0 fnc1 mop2 ⍵}
{arr0(fnc1 dop2 ⍺⍺)⍵}

{⍺←{⍵} ⋄ ⍺(arr0 mop1 fnc2)⍵}
{⍺←{⍵} ⋄ ⍺(arr0 mop1 mop2)⍵}
{⍺←{⍵} ⋄ ⍺(arr0 mop1 dop2 ⍺⍺)⍵}
{⍺←{⍵} ⋄ ⍺(arr0 dop1 arr2)⍵}
{⍺←{⍵} ⋄ ⍺(arr0 dop1 fnc2)⍵}
SYNTAX ERROR
SYNTAX ERROR

{⍺←{⍵} ⋄ ⍺ fnc0 arr1 fnc2 ⍵}
{⍺←{⍵} ⋄ ⍺ fnc0 arr1 mop2 ⍵}
{⍺←{⍵} ⋄ ⍺(fnc0 arr1 dop2 ⍺⍺)⍵}

{⍺←{⍵} ⋄ ⍺ fnc0 fnc1 fnc2 ⍵}
{⍺←{⍵} ⋄ ⍺ fnc0 fnc1 mop2 ⍵}
{⍺←{⍵} ⋄ ⍺(fnc0 fnc1 dop2 ⍺⍺)⍵}

{⍺←{⍵} ⋄ ⍺ fnc0 mop1 fnc2 ⍵}
{⍺←{⍵} ⋄ ⍺ fnc0 mop1 mop2 ⍵}
{⍺←{⍵} ⋄ ⍺(fnc0 mop1 dop2 ⍺⍺)⍵}
{⍺←{⍵} ⋄ ⍺(fnc0 dop1 arr2)⍵}
{⍺←{⍵} ⋄ ⍺ fnc0 dop1 fnc2 ⍵}
SYNTAX ERROR
SYNTAX ERROR
SYNTAX ERROR
{⍺←{⍵} ⋄ ⍺(⍺⍺ mop0 arr1 fnc2)⍵}
{⍺←{⍵} ⋄ ⍺(⍺⍺ mop0 arr1 mop2)⍵}
{⍺←{⍵} ⋄ ⍺(⍺⍺ mop0 arr1 dop2 ⍵⍵)⍵}
SYNTAX ERROR
{⍺←{⍵} ⋄ ⍺(⍺⍺ mop0 fnc1 fnc2)⍵}
{⍺←{⍵} ⋄ ⍺(⍺⍺ mop0 fnc1 mop2)⍵}
{⍺←{⍵} ⋄ ⍺(⍺⍺ mop0 fnc1 dop2 ⍵⍵)⍵}
SYNTAX ERROR
{⍺←{⍵} ⋄ ⍺(⍺⍺ mop0 mop1 fnc2)⍵}
{⍺←{⍵} ⋄ ⍺(⍺⍺ mop0 mop1 mop2)⍵}
{⍺←{⍵} ⋄ ⍺(⍺⍺ mop0 mop1 dop2 ⍵⍵(⍵}
{⍺←{⍵} ⋄ ⍺(⍺⍺ mop0 dop1 arr2)⍵}
{⍺←{⍵} ⋄ ⍺(⍺⍺ mop0 dop1 fnc2)⍵}
SYNTAX ERROR

⋄
⋄
⋄
⋄
⋄
⋄
⋄
⋄
⋄
⋄
⋄
⋄
⋄
⋄
⋄
⋄
⋄
⋄
⋄
⋄
⋄
⋄
⋄
⋄
⋄
⋄
⋄
⋄
⋄
⋄
⋄
⋄
⋄
⋄
⋄
⋄
⋄
⋄
⋄
⋄
⋄
⋄
⋄
⋄
⋄
⋄
⋄
⋄
⋄
⋄
⋄
⋄
⋄
⋄
⋄
⋄
⋄
⋄
⋄
⋄
⋄
⋄
⋄

aa
af ⍵
⍺ am ⍵
⍺ ⍺⍺ ad ⍵
fa
⍺ ff ⍵
⍺ fm ⍵
⍺ ⍺⍺ fd ⍵

⍺ ⍺⍺ mf ⍵
⍺ ⍺⍺ mm ⍵
⍺ ⍺⍺ md ⍵⍵ ⍵
⍺ ⍺⍺ da ⍵
⍺ ⍺⍺ df ⍵

aaa
aaf ⍵
⍺ aam ⍵
⍺ ⍺⍺ ad ⍵
afa
aff ⍵
afm ⍵
⍺⍺ afd ⍵
ama
⍺ amf ⍵
⍺ amm ⍵
⍺ ⍺⍺ amd ⍵
⍺ ada ⍵
⍺ adf ⍵

faa
⍺ faf ⍵
⍺ fam ⍵
⍺ ⍺⍺ fad ⍵
ffa
⍺ fff ⍵
⍺ ffm ⍵
⍺ ⍺⍺ ffd ⍵
fma
⍺ fmf ⍵
⍺ fmm ⍵
⍺ ⍺⍺ fmd ⍵
⍺ fda ⍵
⍺ fdf ⍵

⍺ ⍺⍺ maf ⍵
⍺ ⍺⍺ mam ⍵
⍺ ⍺⍺ mad ⍵⍵ ⍵

⍺ ⍺⍺ mff ⍵
⍺ ⍺⍺ mfm ⍵
⍺ ⍺⍺ mfd ⍵⍵ ⍵

⍺ ⍺⍺ mmf ⍵
⍺ ⍺⍺ mmm ⍵
⍺ ⍺⍺ mmd ⍵⍵ ⍵
⍺ ⍺⍺ mda ⍵
⍺ ⍺⍺ mdf ⍵

0
1
2
4
0
2
2
4

4
4
5
4
4

0
1
2
4
0
1
1
3
0
2
2
4
2
2

0
2
2
4
0
2
2
4
0
2
2
4
2
2

4
4
5

4
4
5

4
4
5
4
4

mdd
daa
daf
dam
dad
dfa
dff
dfm
dfd
dma
dmf
dmm
dmd
dda
ddf
ddm
ddd

←
←
←
←
←
←
←
←
←
←
←
←
←
←
←
←
←

mop0 dop1 dop2
dop0 arr1 arr2
dop0 arr1 fnc2
dop0 arr1 mop2
dop0 arr1 dop2
dop0 fnc1 arr2
dop0 fnc1 fnc2
dop0 fnc1 mop2
dop0 fnc1 dop2
dop0 mop1 arr2
dop0 mop1 fnc2
dop0 mop1 mop2
dop0 mop1 dop2
dop0 dop1 arr2
dop0 dop1 fnc2
dop0 dop1 mop2
dop0 dop1 dop2

⋄
⋄
⋄
⋄
⋄
⋄
⋄
⋄
⋄
⋄
⋄
⋄
⋄
⋄
⋄
⋄
⋄

SYNTAX ERROR
{⍺←{⍵} ⋄ ⍺(⍺⍺ dop0 arr1 arr2)⍵}
{⍺←{⍵} ⋄ ⍺(⍺⍺ dop0 arr1 fnc2)⍵}
{⍺←{⍵} ⋄ ⍺(⍺⍺ dop0 arr1 mop2)⍵}
{⍺←{⍵} ⋄ ⍺(⍺⍺ dop0 arr1 dop2 ⍵⍵)⍵}
SYNTAX ERROR
{⍺←{⍵} ⋄ ⍺(⍺⍺ dop0 fnc1 fnc2)⍵}
{⍺←{⍵} ⋄ ⍺(⍺⍺ dop0 fnc1 mop2)⍵}
{⍺←{⍵} ⋄ ⍺(⍺⍺ dop0 fnc1 dop2 ⍵⍵)⍵}
SYNTAX ERROR
SYNTAX ERROR
SYNTAX ERROR
SYNTAX ERROR
SYNTAX ERROR
SYNTAX ERROR
SYNTAX ERROR
SYNTAX ERROR

⋄
⋄
⋄
⋄
⋄
⋄
⋄
⋄
⋄
⋄
⋄
⋄
⋄
⋄
⋄
⋄
⋄

⍺ ⍺⍺ daa ⍵
⍺ ⍺⍺ daf ⍵
⍺ ⍺⍺ dam ⍵
⍺ ⍺⍺ dad ⍵⍵ ⍵

⍺ ⍺⍺ dff ⍵
⍺ ⍺⍺ dfm ⍵
⍺ ⍺⍺ dfd ⍵⍵ ⍵

4
4
4
5

4
4
5

= already implemented in Dyalog production system.
+ already implemented in Dyalog FRE system.

Of the two part derivations ...
(aa) & (fa) execute immediately.
(af) uses left-argument binding to derive a monadic function.
(am) & (fm) are already allowed and use left-operand binding to derive an ambivalent function.
(ad) & (fd) use left-operand binding to derive a monadic operator.
(da) & (df) use right-operand binding to derive a monadic operator.
(ff), (mf), (mm) & (md) use weak binding to derive an entity of the higher degree of the pair in the
order; fnc, mop & dop.
(ma) is a SYNTAX ERROR because it already has a right argument so aught to run but has no left
operand so cannot.
(dm) & (dd) are SYNTAX ERRORS because a dyadic operator can never be followed by another
operator which must thereby lack a left operand.

The three part derivations are illustrative of higher order compositions but all are strict applications
of the full range of bindings on the two part derivations using the correct precedence. Given the
equivalence of arrays and functions as operator operands the actual number of identifiably different
cases is all but halved. Extending to four part derivations would add nothing as the internal & calling
syntax is determined by the limit of at most four missing parameters; (⍺), (⍺⍺), (⍵⍵) & (⍵).

Examples ...

id ← e.g. ⋄ use → result

af ← 1+ ⋄ af 3 → 4

am

ad

ff ← ⍳⍴ ⋄ ff 'this' → 0 1 2 3

fm ← +/ ⋄

fd ← f00 ⍣ ⋄ 3 fd w → f00 f00 f00 w

fd ← ∧. ⋄ x = fd y → x∧.=y

mf ← /⍳ ⋄ + mf 5 → 10

mm ← ¨⍨ ⋄ ⍴ mm ⍳4 → 1 2 2 3 3 3

md ← /⍣ ⋄ + md 2+y → reduce last 2 dims

da ← ⍣¯1 ⋄ 2 ⊥ da 9 → 1 0 0 1

df ← .≠ ⋄ x ∨ df y → x∨.≠y

Notes.

1. Impromptu presentation

Flipdb Moot, San Quírico d'Orcia, Italia, May 2007.

2. Dynamic operator implementing vector of functions.

 fv←{ ⍝ function vector
 m d←112358314594370 774156178538190
 ⍺←m
 e←2∊⍴⍵
 e<⍺≡m:(m ⍺⍺ ¯1↓⍵),⊂⍵⍵⊃⍬⍴⌽⍵
 e<⍺≡d:(d ⍺⍺ ¯1↓⍵),⍵⍵/⊃⍬⍴⌽⍵
 e∧⍺≡m:⊃⍺⍺{(⍺⍺ ⍺)(⍵⍵ ⍺)}⍵⍵/⍵
 e∧⍺≡d:⊃⍺⍺{(⍺⍺/⍺),⍵⍵/⍵}⍵⍵/⍵
 d ∇ ⍺{⍺ ⍵}¨⍵
⍝ f0∇∇f1 x y ←→ (f0 x)(f1 y)
⍝ a b c f0∇∇f1∇∇f2 x y z ←→ (a f0 x)(b f1 y)(c f2 z)
⍝ (⊂a) f0∇∇f1∇∇f2∇∇f3 w x y z ←→ (a f0 w)(a f1 x)(a f2 y)(a f3 z)
⍝ a b c d e f0∇∇f1∇∇f2∇∇f3∇∇f4 ⊂x ←→ (a f0 x)(b f1 x)(c f2 x)(d f3 x)(e f4 x)
 }

3. Dynamic operators implementing fork & hook

 fk←{ ⍝ fork
 a m d g←112358314594370 774156178538190 998752796516730 336954932572910
 ⍺←a
 ⍺≡a:g ⍺⍺(m ⍺⍺ ⍵)(⍵⍵ ⍵)
 ⍺≡m:⍺⍺ ⍵
 ⍺≡d:⊃⍺⍺/⍵
 ⍺≡g:⊃⍵⍵/⍵
 g ⍺⍺(d ⍺⍺ ⍺ ⍵)(⍺ ⍵⍵ ⍵)
⍝ f0∇∇f1∇∇f2 ⍵ ←→ (f0 ⍵)f1(f2 ⍵)
⍝ ⍺ f0∇∇f1∇∇f2 ⍵ ←→ (⍺ f0 ⍵)f1(⍺ f2 ⍵)
⍝ f0∇∇f1∇∇f2∇∇f3∇∇f4 ⍵ ←→ ((f0 ⍵)f1(f2 ⍵))f3(f4 ⍵)
⍝ ⍺ f0∇∇f1∇∇f2∇∇f3∇∇f4 ⍵ ←→ ((⍺ f0 ⍵)f1(⍺ f2 ⍵))f3(⍺ f4 ⍵)
 }

 hk←{ ⍝ hook
 ⍺←{⍵}
 ⍺⍺ ⍺ ⍵⍵ ⍵
⍝ f0∇∇f1 ⍵ ←→ f0 f1 ⍵
⍝ ⍺ f0∇∇f1 ⍵ ←→ f0 ⍺ f1 ⍵
}

4. Limited use of currying arguments in APL

John has pointed out that the naming of stranded arguments using namelists in traditional functions
would lend itself to a more extensive currying of right arguments. Unfortunately this is precluded for
class methods due to "overloading" so it's difficult to see how it could be utilised for "normal"
functions.

5. Function Results Edition

Dyalog Conference, Helsingör, Danmark, October 2006.

6. Binding Strengths

Brown, JA,"The principles of APL2", IBM Technical Report, TR 03.247, March 1984.
The order as defined in this report and implemented in APL2 was ...
right-operand
bracket
vector
left-operand
left-argument
right-argument

binds a dyadic operator to a function or data on its right.
binds paired brackets to the entity on their left.
binds adjacent data values to form a vector.
binds an operator to a function or data on its left.
binds a function to data on its left.
binds a function to data on its right.

	Two & Three Part Inventions
	Abstract
	Sixteen two part & sixty-four three part syntactic permutations of arrays, functions & monadic & dyadic operators.
	1. Function arrays.
	2. Forks and hooks.
	3. Currying.

	Two and Three Part Inventions
	Examples ...

	Notes.
	1. Impromptu presentation
	2. Dynamic operator implementing vector of functions.
	3. Dynamic operators implementing fork & hook
	4. Limited use of currying arguments in APL
	5. Function Results Edition
	6. Binding Strengths

