
APL in Research:
Prototyping
Software
Santiago Núñez-Corrales, Ph.D.
Quantum Lead, National Center for Supercomputing Applications
Faculty Affiliate, Illinois Quantum Science and Technology Center
Senior Personnel, Hybrid Quantum Architectures and Networks
Faculty Affiliate, Center for Global Studies
Faculty Affiliate, Illinois Informatics
nunezco2@Illinois.edu

@snunezcr

mailto:nunezco2@Illinois.edu

Who we are

Research software is hard

Source: https://wonderingaround.me/2013/11/13/your-plan-vs-reality/

https://wonderingaround.me/2013/11/13/your-plan-vs-reality/

Merali, Z. (2010). Error: why scientific
programming does not compute.
Nature, 467(7317), 775-777.

Research software is hard

Núñez-Corrales, S. Dissecting Computational Reproducibility: Fundamental Challenges. Under review (PNAS).

Programming is a good medium for

expressing poorly understood and

sloppily formulated ideas

Minsky, M., 1967. Why programming is a good medium for expressing
poorly understood and sloppily formulated ideas. Design and Planning
II - Computers in Design and Communication, pp.120-125.

Research Software Engineering

• Scientific statements → software packages
• Our value proposition:
– no need to learn a whole new discipline (software engineering)
– accurate translation between science and programs
– lower project risk with minimal technical debt

• “Some problems are so complex that you have to be highly intelligent and
well informed just to be undecided about them.”
– Laurence J. Peter

Research Software Prototyping

Developing software systems that implement only the
essentials to understand a research problem.

A pliable medium for software experimentation to
reduce future risk and cost

Bugs = $$$ × time lost

Source: https://www.functionize.com/blog/the-cost-of-finding-bugs-later-in-the-sdlc

https://www.functionize.com/blog/the-cost-of-finding-bugs-later-in-the-sdlc

Errors can be *really* expensive

1.95
days

18.1
days

Gordon Bell Prize 2023 (UMich + IIS):
https://dl.acm.org/doi/pdf/10.1145/3581784.3627037

https://dl.acm.org/doi/pdf/10.1145/3581784.3627037

The effect of locality

Regular code: 10% of the code ~ 90% of CPU time
Research code: 1% of the code ~ > 95% of CPU time

See: https://gmd.copernicus.org/articles/13/1431/2020/#&gid=1&pid=1

https://gmd.copernicus.org/articles/13/1431/2020/

Calculus!

_Integrate_naive_ ← {
⍺ ← ⍬
a b N ← ⍵
ds ← (b - a)÷N
s ← a + ds×(0,⍳N-1)
+/ds×(⍺ ⍺⍺ s)

}

normal_pdf ← {
(*¯0.5×(⍵-⍺[1])*2÷⍺[2]*2)÷((2×(○ 1)×⍺[2]*2)*0.5)

}

norm_cdf ← {
LLIM ← ¯40
SF5 ← 1000000
⍺ (normal_pdf)_Integrate_naive_ (LLIM ⍵ SF5)

}

_Integrate_Simpson_ ← {
⍺ ← ⍬
a b N ← ⍵
1=2|N: ⎕SIGNAL 11
ds ← (b - a)÷N
s ← a + ds×(0,⍳N-1)
simpson_rule ← {⍺×((⍺⍺ ⍵[1]) + (4×(⍺⍺ ⍵[2])) + (⍺⍺ ⍵[3]))÷3}
0.5 × +/(ds ⍺⍺ simpson_rule¨({⊂⍵}⌺3)s)

}

Questions we want to answer

• What is the general shape of the core computation?
• How does the math translate into actual code?
• Which simplifications can cause trouble?
• How amenable to parallelization/concurrency is it?
• What are different ways to implement a specific algorithm?
• What are the most performant ones?
• Can performance impact readability?

“Programs must be written for people to read,
and only incidentally for machines to execute.”

Harold Abelson, Structure and Interpretation
of Computer Programs

Prototypes are (likely) disposable

Kenneth Iverson

Falkoff, A.D., Iverson, K.E. and Sussenguth, E.H., 1964. A formal description
of System/360. IBM Systems Journal, 3(2), pp.198-261. https://github.com/rodrigogiraoserrao/ANNAPL/blob/main/Net.aplf

https://github.com/rodrigogiraoserrao/ANNAPL/blob/main/Net.aplf

APL is a mistake, carried through to perfection. It
is the language of the future for the programming
techniques of the past: it creates a new
generation of coding bums.

Edsger W. Dijkstra

“Programming languages, because they were designed for the purpose of
directing computers, offer important advantages as tools of thought. Not only
are they universal (general-purpose), but they are also executable and
unambiguous. Executability makes it possible to use computers to perform
extensive experiments on ideas expressed in a programming language, and the
lack of ambiguity makes possible precise thought experiments.”

Source: https://twitter.com/code_report/status/1569808096654163969/photo/1

https://twitter.com/code_report/status/1569808096654163969/photo/1

Hoekstra, C., 2022, June. Combinatory logic and combinators in array languages. In Proceedings of the 8th ACM SIGPLAN International
Workshop on Libraries, Languages and Compilers for Array Programming (pp. 46-57).

Why all these complications?

Standard high-level language Very high-level language

Domain problem

Formal description

Instructions -> operations

Executable code

Domain problem

Formal description

Instructions -> algorithms

Executable code

APL allows us to explore fast, inexpensively!

Domain experts that apply
computational science

Domain experts that become
involved during scientific software
development

Domain experts that are able to
specify a scientific problem through
computational scenarios

Domain experts that are able to
prototype computational science codes

Benner, K. M., Feather, M. S., Johnson, W. L., & Zorman, L. A. (2014). Utilizing scenarios in the
software development process. Information system development process, 30, 117-134.

All domain experts in science

usefulness

apparent
weirdness

Innovation potential =
apparent weirdness × usefulness

Piet

My own views! Let’s talk later J

Where is APL used today?

quAPL
⍝ Motif examples
⍝ --------------

template ← {⊃ kpr/ (1⌷2⍟(⍴⍺)) ⍴⊂⍵}

gCTR ← {
 (n _) ← ⍴ ⍵
 ID ← {⍵ ⍵ ⍴ 1, ⍵⍴0}
 gate ← ID 2*(⍺ + 2⍟n)
 ((-⍴⍵)↑gate) ← ⍵
 gate
}

superpose ← {
 stage ← ⍵ template H
 stage ⍵
}

nvs ← (idx gtx) stage vs

(cbits, vs) ← measure vs

⍝ Rn controlled gate for one Rn sequence
Rn ← {1∘gCTR P (2×○÷2*⍵)}
qft_Rn_set ← Rn ̈ (1 ↓ ⍳ 2 ⍟ 1⌷⍴ vs)

Toward a quantum instruction set architecture

??

What have we learned?

• Building research software is hard
• Scientific packages have a core
• APL helps explore, understand, and prototype that core
• Sometimes, APL code becomes your code J

