' PL in Research:
Prototyping
Software

Santiago Nunez-Corrales, Ph.D.
Quantum Lead, National Center for Supercomputing Applications

Faculty Affiliate, Illinois Quantum Science and Technology Center
Senior Personnel, Hybrid Quantum Architectures and Networks
Faculty Affiliate, Center for Global Studies

Faculty Affiliate, lllinois Informatics

nunezco2@Illlinois.edu

Supercomputing Applications

UNIVERSITY OF ILLINOIS URBANA-CHAMPAIGN

I National Center for 4" @snunezcr

mailto:nunezco2@Illinois.edu

Who we are

Eile Edit Qptions Navigate Hotlist Annotate -
EIE @ER

Document Title: 1 NCSA Mosaic Home Pagel

L

1

/h

- C il

MOSAIL

XWindow System + Microsoft Windows + Macintosh |

fielcome o NCSA osaic, en Interuet information browser end World Wide Web client. NCSA
Mosaic was developed at the National Center for Supercomputing Applications af
University of Illinois in --> Urbana-Champaign. NCSA Mosaic software is cowngm-d by
The Board of Trustees of the University of Illinois (UI), and ownership remains with the

Jan 97

The Software Development Group at NCSA has worked on NCSA Mosaic for nearly four years
and we've learned a lot in the process. We are honored that we were able to help bring
this technology to the masses and appreciated all the support and feedback we have
received in return. However, the time has come for us to concentrate our limited
resources in other aress of interest and development on Mosaic is complete

411 information about the Mosaic project is available fram the hamepages.

i
NCSA Mosaic Platforms:
® NCSA Mosaic for the X Window System
@ NCSA Mosaic for the Apple Macintosh
@ NCSA Mosaic for Microsoft Windows
World Wide Web Resources The Eo!lvmns resources are available to help introduce you to
berspace and keep track of its growth:
® A glossary of World Wide Web terms and acronyms L 5
@ An INDEX to Mosaic related documents F ” I b’
SR e T e e
@ Mosaic and WwWW related Tutorials u sca a ’ 'ty to cove
@ Internet Resources Meta-Index at NCSA -
i every field in large regions
10
le6
422 08
421
420 06
419
! 04
418
417
contribuitors. i - 02
-1.005 -1.004 -1.003 -1.002 -1.001 ~-1.000 -0.999 -0.998
le7
Model of building functionality 7 days after
earthquake scenario
(dark purple = nonfunctional — yellow = fully functional) 00

NCSA | NATIONAL CENTER FOR SUPERCOMPUTING APPLICATIONS

Research software 1s hard

Your plan

ES a

Iad

Source: https://wonderingaround.me/2013/11/13/your-plan-vs-reality/

E NCSA | NATIONAL CENTER FOR SUPERCOMPUTING APPLICATIONS

https://wonderingaround.me/2013/11/13/your-plan-vs-reality/

. .oCIENTISTS AND THEIR
SOF TUARE
A survey of nearly 2,000
researchers showed how coding
has become an important part of
the research toolkit, but it
also revealed some potential

problens.

]
> said scientists spend

more time today developing Revolutionizing Science and Engineering

softuare than five years ago."

_ Through Cyberinfrastructure:
>] .- of scientists spend at
least one fifth of their time . . .
e Report of the National Science Foundation
Blue-Ribbon Advisory Panel on
T

> Omly im of scientists Cyberlnfrastructure

have a good understanding of

software testing.

G § £ :‘ 55 ey e
7 oty pP=ar e UI SCTIentists
think that formal training

January 2003

in developing seftware is
important.

Merali, Z. (2010). Error: why scientific
programming does not compute.
Nature, 467(7317), 775-777.

E NCSA | NATIONAL CENTER FOR SUPERCOMPUTING APPLICATIONS

Research software 1s hard

Nature Nature —>> Abstracted Models |
2 ﬁ ¥
Scientific Instrument Finite Representation [«€— Phenomenology
2 N 2 ,
Measurement Theory of Computation —>»| Computer Architecture
2 ﬁ S 2
Phenomenology Software Pragmatics € Theory of Simulation
2 N 2 \
Validation/Verification Data Analysis —>» Validation/Verification

Nunez-Corrales, S. Dissecting Computational Reproducibility: Fundamental Challenges. Under review (PNAS).

E NCSA | NATIONAL CENTER FOR SUPERCOMPUTING APPLICATIONS

Programming is a good medium for
expressing poorly understood and

sloppily formulated ideas

Minsky, M., 1967. Why programming is a good medium for expressing
poorly understood and sloppily formulated ideas. Design and Planning
Il - Computers in Design and Communication, pp.120-125.

E NCSA | NATIONAL CENTER FOR SUPERCOMPUTING APPLICATIONS

Research Software Engineering

e Scientific statements - software packages
e QOur value proposition:

— no need to learn a whole new discipline (software engineering)

-

— accurate translation between science and programs

— lower project risk with minimal technical debt

* “Some problems are so complex that you have to be highly intelligent and
well informed just to be undecided about them.”

— Laurence J. Peter

E NCSA | NATIONAL CENTER FOR SUPERCOMPUTING APPLICATIONS

Research Software Prototyping

¢

W q Developing software systems that implement only the
essentials to understand a research problem.

: A pliable medium for software experimentation to

O \V/ reduce future risk and cost
\ 8 X

J

E NCSA | NATIONAL CENTER FOR SUPERCOMPUTING APPLICATIONS

Bugs = $$$ x time lost
Cost of Defects

30x ... 100x

less (

15X
7X
1X -
Development
. . . . cycle
Requirements Design/ Coding Testing Deployment/
Architecture Maintenance

The more time we save your team, the more time they have to find bugs sooner.

That Saves Money

Source: https://www.functionize.com/blog/the-cost-of-finding-bugs-later-in-the-sdlc

E NCSA | NATIONAL CENTER FOR SUPERCOMPUTING APPLICATIONS

https://www.functionize.com/blog/the-cost-of-finding-bugs-later-in-the-sdlc

Errors can be *really* expensive

Work Basis | Versatility Benchmark System Machine Wall time PFLOPS
AE/PSP (CPU cores/GPUS) (mins) (% of peak)
Si nanowire K
~ RSDFT [31] (2011) FD PSP B s it e (50K cores) | 736/SCE | 71(3.6%)
3 5
3 Mo BlueGene/L
—~ QBox [23] (2008) PW PSP (IK stoms, 12K ¢~)<8 k-pts (125K cores) 8.8 / SCF 0.2 (56.5%)
Mg dislocation Summit
% DFT-FE [6] (2019) FE AE/PSP T atoms,lloOK = (22,800 GPUs) | 24/ SCF 46 (27.8%)
Si nanocluster Frontera
PARSEC [30] (2023) iR ESE 100K atoms, 400K e~ (115K cores) 2,808/ G5 -
on Si bulk
= Hybrid DFT, - NERSC Cori-KNL
PW PSP 4,096 atoms, 16K e 30 / SCF -
E ACE [38] (2017) (8K cores)
QMCPACK [20] NiO supercell Titan ~
(2018) M ESE 128 atoms, 1,536 e~ (18000 GPUs) AMIL
QMCPACK [19] NiO supercell ~ _ ~
(2020) 3.4 FE 512 atoms, 6,144 e~
LNO-CCSD(T) [17] . Lipid transfer protein Intel Xeon PC
g (2019) Cawgianl AE 1,023 atoms, 3,980 e~ (6 cores) 26,0641/G3
2 iFCL QChem [15] . Transition metal complex
5 (2021) Gaustian| AE 47 atoms, 192 e~ - - -
- . .
@ MCSCF, NWChem [14] G,y 65ian) AE Crtmer Corl Haswell. | .0 rscm -
3 atoms, 72 e (2048 cores)
(2017)
— Extended defects in Mg-Y alloy Frontier
DFI‘-;E-I\;EXC FE | AE/PSP | L (36K atoms, 76K e~)x4 k-ptsT | (19,200 GCDs) | 3.7/SCF | 226.3 (49.3%)
IL (74K atoms, 155K e~)x4 k-ptsT| (64,000 GCDs) | 8.6/SCF | 659.7 (43.1%)

T In simulations using k-point sampling (QBox, DFT-FE-MLXC), the total number of electrons in the supercell are obtained by multiplying with the number of k-pts: number

of electrons in the supercell for QBox are 96K e~, DFT-FE-MLXC system I are 302K e~ and system Il are 619K e™.

E NCSA | NATIONAL CENTER FOR SUPERCOMPUTING APPLICATIONS

1.95
days

W

Ry

T

18.1
days

Gordon Bell Prize 2023 (UMich + IIS):
https://dl.acm.org/doi/pdf/10.1145/3581784.3627037

https://dl.acm.org/doi/pdf/10.1145/3581784.3627037

The effect of locality

Regular code: 10% of the code ~ 90% of CPU time
Research code: 1% of the code ~ > 95% of CPU time

Pre-proc; g and
download tools
ALL task
Rl T L
SetTgsd task | H SetDbs task
Namelist
Create a preliminary input file: Generate the
total grain . meteorology
name.inp
size distribution file database file

SetSrc task

1
1
1
1
1
Generate the :
nnnnn tgsd name.dbs.pro /<€———
source term :
1
1
| =8 -/
h — a—
1
1 0t

nnnnn pts name.src name.grn name.dbs.nc%— E aC a(CU) 6 aC
! ' ! ' FTi - Ki =0
FALL3D task ! R at 6X1 6X1 6X1
Solver i o a CV
oc oV) _ o (, 9C\ _,
at = 90X, 08X, \ 20X,

ac+6[C(W—Ws)] o (K ac>=o

at dX, T 9Xs \ 2aXg

See: https://gmd.copernicus.org/articles/13/1431/2020/#&gid=1&pid=1

E NCSA | NATIONAL CENTER FOR SUPERCOMPUTING APPLICATIONS

https://gmd.copernicus.org/articles/13/1431/2020/

Calculus!

_Integrate_Simpson_ <« {
o « 8
abN«uw
1=2|N: [SIGNAL 11
ds « (b - a)=+N

0.35 4
0.30
0.25 +
x
L 0.20

0.15 +

0.10 CDF(x)

0.05 S « a + dSX(O,'LN-l)

B LT 1 simpson_rule « {oax((ao w[1]) + (4x(ao w[2])) + (oo w[3]))+3}
x X 0.5 x +/(ds ao simpson_rule ({cw}®3)s)

}

normal_pdf <« {
(x70.5x(w-a[1])*2+a[2]*x2)+((2x(0 1)xa[2]*x2)%x0.5)
}

norm_cdf <« {
LLIM « 40
SF5 « 1000000
o (normal_pdf)_Integrate_naive_ (LLIM w SF5)

E NCSA | NATIONAL CENTER FOR SUPERCOMPUTING APPLICATIONS

Questions we want to answer

 What is the general shape of the core computation?

* How does the math translate into actual code?

* Which simplifications can cause trouble?

 How amenable to parallelization/concurrency is it?

 What are different ways to implement a specific algorithm?
 What are the most performant ones?

e Can performance impact readability?

E NCSA | NATIONAL CENTER FOR SUPERCOMPUTING APPLICATIONS

“Programs must be written for people to read,
and only incidentally for machines to execute.”

Harold Abelson, Structure and Interpretation
of Computer Programs

E NCSA | NATIONAL CENTER FOR SUPERCOMPUTING APPLICATIONS

Prototypes are (likely) disposable

FROM THE AUTHOR OF THE MYTHICAL MAN-MONTH

Plan to throw one (implementation)
away; you will, anyhow.

— Zred Brooks —

DESIGN
OF DESIGN

ESSAYS FROM A COMPUTER SCIENTIST

FREDERICK P. BROOKS, JR.

E NCSA | NATIONAL CENTER FOR SUPERCOMPUTING APPLICATIONS

Paradigms

Imperative

Dataflow

Source: https://www.watelectronics.com/
types-of-programming-languages-with-differences/

E NCSA | NATIONAL CENTER FOR SUPERCOMPUTING APPLICATIONS

Kenneth Iverson

CPU, central processing unit system program APL\360
User’s Manual
™
=11 :ipl 0)
#1, puass — €18) !
ty=Tis A V/brouom 2
| MAC® (La™/p), 2, 1, §; 1'P3) 3
Prass — (QTL+ Lpsass 4
o'/p e @T2 + Lo™/p 8
1:V/tse 6
= Lpsas : +/a/ T 7
i R0 8 333330000000000\\\\\LLLLLPPPPP66666\\\\\AAAAAAAAAAAAAAA 66666
L0587 333330000000000\\\\\LLLLLPPPPP6 6666 \\\\\AAAAAAAAAAAAAAL 66666
ne N 9 333330000000000\\\\\LLLLLPPPPP66666\\\\\AAAAAAAAAAAAAAA 66666
SRR 10 PPPPP AAAAABE666\\\\\66666\\\\\00000 66666LLLLL
1.3 Mo, My 28 PPPPP AAAAABB666\\\\\66666\\\\\00000 66666LLLLL
— (12, 14, 13, 17, 19)n, 1 PPPPP AAAAABE666\\\\\66666\\\\\00000 66666LLLLL
% LLLLL66666 00000 AAAAANNNNNNNNNN 00000 LAY
Y a, — Lo'/ I 12 LLLLL66666 00000 AAAAANNNNNN NN 00000 AW
P a,, j — (Lo'/I9),0 13 LLLLL66666 00000 AAAAANNNNNNNNNN 00000 A\
2 . w10 AAAAA0000066666 66666 33333 6666600000 AAAAA
AHJ‘—(O # Lo'/I) X LR* - 14 AAAAA0000066666 66666 33333 6666600000 AAAAA
@ =2 | j+ (Lo'/ 1) + (0 % La*/I) X LR 15 AAAAA0000066666 66666 33333 6666600000 AAAAA
&0 16 PPPPP66666LLLLLO0000\\\\\ PPPPP\\\\\ AAAAA00000
a, — La*/o’/I° PPPPP66666LLLLL00000N\\\\\ PPPPP\\\\\ AAAAA00000
EN 3 4,8 . 17 PPPPP66666LLLLLO0000N\\\\ PPPPP\\\\\ AAAAA00000
e (LoD, (‘;La/w/l"), (J-“/‘m LR LLLLL33333PPPPPAAAAAN\N\\ PPPPP 6666600000\ \\\\
a2 | (Lo'¥/P) + (0 % Lo'/I) X LR 18 LLLLL33333PPPPPAAAAANNN\N PPPPP 6666600000\ \\\\
st 24 12 / gyt 40 Lt/ 0 LLLLL33333PPPPPAAAAAN\\\\ PPPPP 6666600000\ \\\\
3 a, 2 I 0# La'/I) X LR . ’ .
o e/ T il V net ¢ layers Net (lossFn 1lr) ;layersFMT
C={1:(ny =b0) A~ V/tsse A Cre a neural vork.
=0:V/t 1 En° i 2
= = aceEn® e ethod
pras = (L AT V) A prana ossFn 1S methods
' . -
hy, pusae — 1, (16) T2 /t/Y A "1lr” is a

0:V/hRA0,1,1,p, (/) X By)
oy b = ((h A (1,1, 1, pr, (/) X B))/)a
9o — (X (0,3,4)

“layers’

=]1:9 ~
By 0 net « [INS®
SLinAG=9 i net.layers ¢ layers
MACY(48, 40, 32, 24, 56),, 8, s, &; B)
MACY(112, 104, 96, 88, 120),, 8, f, g; 5) net.lr ¢« 1r
Pusas — 2(18)
— aperdling state « /stop; rale sw = process; operaling state/ net. LOSSFn— € DNS lossFn
=) on: manual light — /off; operating state = stop; on/ layersFMT « '(*,")"',%>(~4," ',+~)/7", layers
= : wait light «— /off; pyy; -
o i Ll net.[DF layersfMT,' ', (a(SI),' ',(>71%'.'(#c-)7lossFn)," ',¥1r

v

Falkoff, A.D., Iverson, K.E. and Sussenguth, E.H., 1964. A formal description
of System/360. IBM Systems Journal, 3(2), pp.198-261. https://github.com/rodrigogiraoserrao/ANNAPL/blob/main/Net.aplf

1T ILLINOIS NCSA

https://github.com/rodrigogiraoserrao/ANNAPL/blob/main/Net.aplf

IN PRAISE OF APL

ANGUAGE ROGRA

by Alan J. Perlis

(Keprinted from SIAM NEWS, June 1977, with
permission of the Society for Industrial
and Applied Mathematics, Philadelphia,
Pennsylvania.)

Many reasons can be given for teach-
ing one or more aspects of computer
science (defined as the study of the set
of phenomena arising around and because of
the computer) to all university students.
Probably every reader of this note sup-
ports some of these reasons. Let me list
the few 1 find most important: (1) to
understand and to be able to compose

algorithms; (2) to understand how compu- APL is a mistake, carried through to perfection. It
ters are organized and constructed; (3) to is the language of the future for the programming
develop fluency in (at least) one program- techniques of the past' it creates a new

ming language; (4) to appreciate the . ! ’

inevitability of controlling complexity generation of coding bums.

through the design of systems; (5) to

appreciate the devotion of computer .o
scientists to their subject and the Edsger W. Dijkstra
exterior consequences (to the student as

citizen) of the science's development.

1T ILLINOIS NCSA

1. Important Characteristics of Notation

In addition to the executability and universali-
ty emphasized in the introduction, a good notation
should embody characteristics familiar to any user
of mathematical notation:

-Ease of expressing constructsarising in problems.
-Suggestivity.

<Ability tosubordinate detail. t
-Economy.

-Amenability to formal proofs.

The foregoing is not intended as an exhaustive list,
but will be used to shape the subsequent discus-
sion,

“Programming languages, because they were designed for the purpose of
directing computers, offer important advantages as tools of thought. Not only
are they universal (general-purpose), but they are also executable and
unambiguous. Executability makes it possible to use computers to perform
extensive experiments on ideas expressed in a programming language, and the
lack of ambiguity makes possible precise thought experiments.”

E NCSA | NATIONAL CENTER FOR SUPERCOMPUTING APPLICATIONS

Combinator
Languages

Functional
Languages

Source: https://twitter.com/code_report/status/1569808096654163969/photo/1

1T ILLINOIS NCSA

https://twitter.com/code_report/status/1569808096654163969/photo/1

Combinator Lambda Expression
I Aa.a
Aab.a
Aab.abb
Aabc.acb
Aabc.a(bc)
Aabc.ac(bc)
Aabcd.ab(cd)
Aabcd.a(bcd)
Aabcd.a(bc)(bd)
Aabcd.a(bd)(cd)
Aabcde.a(bd)(ce)
Aabcde.ab(cde)
Aabcde.a(bde)(cde)
Aabcdefg.a(bde)(cfg)

Hoekstra, C., 2022, June. Combinatory logic and combinators in array languages. In Proceedings of the 8th ACM SIGPLAN International
Workshop on Libraries, Languages and Compilers for Array Programming (pp. 46-57).

1T ILLINOIS NCSA

O mPeeFPouwwon s R

” \

DYALOC

+ B

Backspace

| =

\ +

1T ILLINOIS NCSA

Why all these complications?

Standard high-level language Very high-level language

Domain probp DJomain problem

" Formaldescription

Instructions -> operations

APL allows us to explore fast, inexpensively!

— T T

E NCSA | NATIONAL CENTER FOR SUPERCOMPUTING APPLICATIONS

APL AS A PROTOTYPING LANGUAGE:
CASE STUDY OF COMPILER DEVELOPMENT PROJECT

Matsuki Yoshino
Software Works, Hitachi, Ltd.

5030 Totsuka-machi Totsuka-ku Yokahama-shi
Kanagawa-ken 244 Japan

ABSTRACT

DOCUMENTS AND HMEETINGS

We are applying prototyping method using APL to a

commercial compiler's development Project. i + '
This paper will dlSCU?S the follow1ng.matters based > DR — ST -
on our one year experience of the project: - (_
1) Merits of APL as a prototyping language. l l i
2) An environment of the prototype. MODULE MODULE MODULE
3) A representation of tables and the intermediate sl TESY i i
language of compilers in an APL environment. I [I
| . |
4) A strategy of transforming the APL prototype L ________ 1 PROGRAN |sccscasac }
into final product written in Pascal. 1
TEST
N ;
5) Evaluation of this method. INTERFACE ERROR INTERFACE ERROR
FIG.1 CONVENTIONAL DEVELOPMENT METHOD

E NCSA | NATIONAL CENTER FOR SUPERCOMPUTING APPLICATIONS

All domain experts in science

Domain experts that apply
computational science

Domain experts that become
involved during scientific software
development

Domain experts that are able to
specify a scientific problem through
computational scenarios

Domain experts that are able to
prototype computational science codes

Benner, K. M., Feather, M. S., Johnson, W. L., & Zorman, L. A. (2014). Utilizing scenarios in the
software development process. Information system development process, 30, 117-134.

E NCSA | NATIONAL CENTER FOR SUPERCOMPUTING APPLICATIONS

Innovation potential =
apparent weirdness x usefulness

usefulness
3,
<

Java

E Scala

apparent
weirdness

@ Uiua

Piet

01001010101
10110010101
10001110100
110010101011
110101010101

My own views! Let’s talk later ©

E NCSA | NATIONAL CENTER FOR SUPERCOMPUTING APPLICATIONS

Where is APL used today?

z
S B S s
g i M 2
s
2) P
2 AL
c
o
£
Cc-0
C=0 f
CO: 7

SRS SN W L

[

fepd

L

296 204 202 290 288 286
Binding Energy (eV)

\
T
284 282

INFORMATION

-~ ANALYSIS @t -

PROGRAM

KNOWLEDGE

GORITH
MIN

VISUALIZATION G

&

E NCSA | NATIONAL CENTER FOR SUPERCOMPUTING APPLICATIONS

y METHODS

U-net CNN in APL

Exploring zero-framework, zero-library machine learning

Aaron W. Hsu Rodrigo Girdo Serréo
rodrigo@dyalog.com
Consultant
Dyalog, Ltd.
Bramley, United Kingdom

aaron@dyalog.com
Researcher
Dyalog, Ltd.
Bloomington, IN, United States

Appendix A: Complete APL U-net implementation
:Namespace UNET

ICFP’22, Sep 11 - Sep 16, 2022, Ljubljana, Slovenia Aaron W. Hsu and Rodrigo Girdo Serrao
W«@ 0 V«@ ¢ 7«8 ¢ LR«1e™9 o M0+«0.99
I FWD«{Zr«(#W)pco
128 64 64 2 CV«{0[z42[a]«cZ[a],cz«(,[2+13]3 3@>Z[a]«cw)+.x,[13]a>W}
CC{w,=(Lp)+(-Tp)+(a>2)-4p«2+<(pasZ)-pw}
MX<{l#[2],[2 3](2 2p2)B>Z[a]«cw}
_input output UP<{((2x " 14pw), 1tpasW)p0 2 1 3 4¥w+.xasW-Z[al«wcw}
image |a|& segmentation Cle{1E78+z+[12]+/z«*z-[12][/z+w+.xa>W-Z[a]«cw}
tile [LA«~{a2#Z:w
) map down«(a+6)V(a+2)MX (a+1)CV(a+0)CV w
(0+2)CC(a+5)UP(a+4)CV(a+3)CV down}
2 C1 1 CVOCV 3 LA wp=3t1,~puw}

BCK«{Y«a ¢ YA«w
256 128 A«{0-W[a]«c(a>W)-LRx>V[a]«cw+MOx (pw)pa>V}
ACV«{w«,[13]e¢[1]0 1 3 28a>W ¢ x«>a>Z ¢ Az<«wx0<i>a>Z

> AZ«20720[1](4+2tpAz) 1Az
s el o _«0. A 3 01 28(&,[t2]az)+.x,[12]3 3@x

w+.x= [2+13]3 30AZ}
ACC«{x«a>Z 0 Az+w ¢ d«-|2+%21(px)-pAz ¢ (=d)e(1>d)d[1](px)taz}

512 256 t AMX<{x+«0>Z o Az+w ¢ yxx=y«(px)t2#2/[1]Aaz}
D"D‘D =» conv 3x3, RelLU AUP+{w«0a>W ¢ x<«a>Z ¢ Az«w ¢ cz+(2 2p2)BAz
'L S _«o A(§,[12]x)+.x,[12]cz

1024 512 copy and crop (,[2+13]cz)+.xQ5w}
ACLl«{w«asW ¢ x«0>Z ¢ Az+w ¢ _<«o A(®,[12]x)+.x,[12]Az o Az+.xQw}

e # max pool 22
p & 4 up-conv 2x2 ALA+{02#Z:w
down<«(a+6)V(a+3)ACV (a+4)ACV(a+5)AUP wt[2]=-2+=>¢pw

%) ' 1024 I

< > I > S

- & = conv 1x1 (a+0)ACV (0+1)ACY(w ACCZ0+2)+(a+2)AMX down}
3 ALA O ACV 1 ACV 2 AC1 YA-(~Y),[1.51Y}

Figure 1. Original u-net architecture, as seen in the original paper [Ronneberger et al. 2015]. Arrows represent operations E{-+7,8(oxul317)+ (~o) xwl 3301}

between the multi-channel feature maps represented by the rectangles. The number on top of each rectangle is its number of
RUN«{Y YA(Y E YA)-(Y«[0.5+nmtwi=2+=(pw)-nm«<2tpYA)BCK-YA«FWD a}

channels and the numbers in the lower-left corner are the x and y dimensions of the feature maps.
:EndNamespace

NCSA | NATIONAL CENTER FOR SUPERCOMPUTING APPLICATIONS

quAPL

A Motif examples

template « {> kpr/ (102e(pa)) pcw}

gCTR « {
(n) «pw
ID « {w w p 1, wpO}
gate « ID 2x(o + 2en)
((-pw)tgate) « w
gate

}

superpose <« {
stage « w template H
stage w

}

nvs « (idx gtx) stage vs

(cbits, vs) <« measure vs

(|0> + e2ril0.z1...2n] ‘1>)

Sl

(|0> 4 eQTri[O.zz...z,,,] ‘1>)

£ 8

|
E

e
-

(|0> + e2mil0.zs...zn] ‘1>)

-

(|0> 4 erri[O.m,,,_lmn] |1>)

-

ot . L
| |i . - @®

l

A Rn controlled gate for one Rn sequence
Rn « {10gCTR P (2x0+2xw)}
gft_Rn_set « Rn ~ (1 4 v 2 e 1[lp vs)

(|0> 4 eQ‘/ri[O.zn] |1>>

-

E NCSA | NATIONAL CENTER FOR SUPERCOMPUTING APPLICATIONS

Toward a quantum instruction set architecture

—————— - AL DT rrrryrrrrrrrrerrrrrrrrr ey T LT L L

8

OpenQASM/QIR L,

Pulse-level interfaces L,

Quantum hardware Lo

1

SEQUENCE SELECTION ITERATION

¥ N

<>
3 om ?
J 4 I

E NCSA | NATIONAL CENTER FOR SUPERCOMPUTING APPLICATIONS

What have we learned?

* Building research software is hard

e Scientific packages have a core
APL helps explore, understand, and prototype that core
* Sometimes, APL code becomes your code ©

I NCSA | NATIONAL CENTER FOR SUPERCOMPUTING APPLICATIONS

