

APL Problem Solving Competition

Phase 1
Introduction
The Phase 1 problems are designed to be solved using short APL functions. If you find
yourself writing more than a couple of statements in your solution, then there is probably
a better way to do it.

Submission format
Each solution must be a single dfn or tacit function.

A dfn is one or more APL statements enclosed in braces {}. The left hand argument, if any,
is represented in a dfn by ⍺, while the right hand argument is represented by ⍵. For
example:
 'Hello' {⍺,'-',⍵,'!'} 'world'
Hello-world!

A dfn terminates on the first statement that is not an assignment. If that statement
produces a value, then the dfn returns that value as its result. The diamond symbol ⋄
separates APL statements. For example:
 'left' { ⍵ ⋄ ⍺ } 'right'
right

More information on dfns can be found on the APL Wiki.

A tacit function is an APL expression that does not explicitly mention its arguments. In the
example below, (+⌿÷≢) is a tacit function that computes the average of a vector (list) of
numbers:
 (+⌿÷≢) 1 2 3 4 5 6
3.5

More information on tacit functions can be found on the APL Wiki.

Judging Guidelines
Phase 1 will mainly be judged based on:

https://aplwiki.com/wiki/Dfn
https://aplwiki.com/wiki/Tacit_programming

Generality: does your function handle the given basic and edge cases?
Use of array-oriented thinking: did you write array-oriented APL or something that
looks more like C# written in APL?

You should not include comments in your Phase 1 solutions.

Tips
Several of the problem descriptions will describe arguments that can be a scalar (a
single element) or a vector (a list). This is largely pedantic, but in such cases your
functions should produce correct results for both types of input.
The symbol ⍝ is the APL comment symbol. In some of the examples, we provide
comments to give you more information about that particular example.
Some of the problem test cases use "boxed display" to make the structure of the
returned results clearer. Boxing is always active on TryAPL and can be enabled in your
local APL Session with the]Box user command:
 ⍳¨⍳4
 1 1 2 1 2 3 1 2 3 4
]Box on
Was OFF
 ⍳¨⍳4
┌─┬───┬─────┬───────┐
│1│1 2│1 2 3│1 2 3 4│
└─┴───┴─────┴───────┘

https://tryapl.org/?clear&q=%E2%8D%B3%C2%A8%E2%8D%B34&run

Sample problem
The content of the orange box shows what a typical Phase 1 problem description looks
like. It also presents some possible solutions of varying quality, and explains how to
provide your own solution.

Each problem starts with a task description; some also include a hint suggesting one or
more APL primitives. These may be helpful in solving the problem, but you are under no
obligation to use them. Clicking on a primitive in the hint opens the Dyalog
documentation page for that primitive.

Each problem ends with some example cases. You can use these as a basis for
implementing your solution.

Counting Vowels 
Write an APL function to count the number of vowels (A, E, I, O, U) in an array
consisting of uppercase letters (A–Z).

 Hint: The membership function X∊Y could be helpful for this problem.

Examples
 (fn) 'COOLAPL'
3
 (fn) '' ⍝ empty argument
0
 (fn) 'NVWLSHR' ⍝ no vowels here
0

Below are three sample solutions. All three produce the correct answer, but the first two
functions would be ranked higher by the competition judging committee as they
demonstrate better use of array-oriented programming than the third one.
 ({+/⍵∊'AEIOU'}) 'COOLAPL' ⍝ good dfn
3
 (+/∊∘'AEIOU') 'COOLAPL' ⍝ good tacit function
3
 ⍝ suboptimal dfn:
 {(+/⍵='A')+(+/⍵='E')+(+/⍵='I')+(+/⍵='O')+(+/⍵='U')} 'COOLAPL'
3

http://help.dyalog.com/latest/#Language/Primitive%20Functions/Membership.htm

1: Counting DNA Nucleotides
This problem was inspired by Counting DNA Nucleotides found on the excellent
bioinformatics website rosalind.info.

Write a function that:

takes a right argument that is a character vector or scalar representing a DNA string
(whose alphabet contains the symbols 'A', 'C', 'G', and 'T').
returns a 4-element numeric vector containing the counts of each symbol 'A', 'C', 'G',
and 'T' respectively.

 Hint: The key operator f⌸ or the outer product operator ∘.g could be helpful.

Examples

 (fn)
'AGCTTTTCATTCTGACTGCAACGGGCAATATGTCTCTGTGTGGATTAAAAAAAGAGTGTCTGATAGCAGC'
20 12 17 21

 (fn) ''
0 0 0 0

 (fn) 'G'
0 0 1 0

􏑱

https://rosalind.info/problems/dna/
https://rosalind.info/
https://help.dyalog.com/latest/#Language/Primitive%20Operators/Key.htm
https://help.dyalog.com/latest/#Language/Primitive%20Operators/Outer%20Product.htm

2: Attack of the Mutations! 
This problem is inspired by the Counting Point Mutations problem found on the
excellent Bioinformatics education website rosalind.info.

Write a function that:

takes right and left arguments that are character vectors or scalars of equal length –
these represent DNA strings.
returns an integer representing the Hamming distance (the number of differences in
corresponding positions) between the arguments.

 Hint: The plus function X+Y could be helpful.

Examples
 'GAGCCTACTAACGGGAT' (fn) 'CATCGTAATGACGGCCT'
7

 'A' (fn) 'T'
1

 '' (fn) ''
0

 (fn)⍨ 'CATCGTAATGACGGCCT'
0

https://rosalind.info/problems/hamm/
https://rosalind.info/
https://rosalind.info/glossary/hamming-distance/
https://help.dyalog.com/latest/Content/Language/Symbols/Plus.htm

3: Uniquely Qualified
Write a function that:

takes right and left arguments that are arrays of arbitrary rank, depth, and value.
returns a vector of all elements that appear in either of the two argument arrays but
not in both. The order of elements in the result is not significant.

 Hint: The without function X~Y could be helpful.

Examples
 'DYALOG' (fn) 'APL'
DYOGP

 'DYALOG' (fn) ⊂'APL'
┌─┬─┬─┬─┬─┬─┬───┐
│D│Y│A│L│O│G│APL│
└─┴─┴─┴─┴─┴─┴───┘

 (2 2⍴'Hello'(⊂'World')(2 2⍴⍳4)42) (fn) 42 'Have a nice day'
┌─────┬───────┬───┬───────────────┐
│Hello│┌─────┐│1 2│Have a nice day│
│ ││World││3 4│ │
│ │└─────┘│ │ │
└─────┴───────┴───┴───────────────┘

 1 1 1 (fn) 2 2
1 1 1 2 2

�

http://help.dyalog.com/latest/#Language/Primitive%20Functions/Excluding.htm

4: In the Long One... 
Write a function that:

takes a right argument that is a Boolean scalar or vector.
returns the length of the longest sequence of consecutive 1s.

 Hint: The partition function X⊆fY could be helpful.

Examples
 (fn) 1 1 1 0 1 1 0 0 1 1 1 1 0
4

 (fn) ⍬
0

 (fn) 1
1

 (fn) 0
0

 (fn) 12/0 1 0 1
12

https://help.dyalog.com/latest/#Language/Primitive%20Functions/Partition.htm

5: Stairway to Heaven  (with apologies to Led Zeppelin)

Write APL function that:

Given a scalar integer argument, n, in the range 0-100.
Returns a character matrix comprised of spaces and ⎕ that resembles an n-level left-
to-right ascending stairway.

 Hint: The index generator function ⍳Y could help with solving this problem.

Examples

 (fn) 10
 ⎕
 ⎕⎕
 ⎕⎕⎕
 ⎕⎕⎕⎕
 ⎕⎕⎕⎕⎕
 ⎕⎕⎕⎕⎕⎕
 ⎕⎕⎕⎕⎕⎕⎕
 ⎕⎕⎕⎕⎕⎕⎕⎕
 ⎕⎕⎕⎕⎕⎕⎕⎕⎕
⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕

 (fn) 0 ⍝ returns a 0×0 matrix

https://en.wikipedia.org/wiki/Stairway_to_Heaven
http://help.dyalog.com/latest/#Language/Primitive%20Functions/Index%20Generator.htm

6: Pyramid Scheme 
Write a monadic function that:

takes an argument n that is an integer scalar in the range 0-100.
returns a square matrix "pyramid" with 0⌈¯1+2×n rows and columns of n increasing
concentric levels.
By this we mean that the center element of the matrix will be n, surrounded on all
sides by n-1.

 Hint: The functions minimum X⌊Y and reverse ⌽Y, and the outer product operator
X∘.gY could be helpful.

Examples
 (fn) 3
1 1 1 1 1
1 2 2 2 1
1 2 3 2 1
1 2 2 2 1
1 1 1 1 1

 (fn) 5
1 1 1 1 1 1 1 1 1
1 2 2 2 2 2 2 2 1
1 2 3 3 3 3 3 2 1
1 2 3 4 4 4 3 2 1
1 2 3 4 5 4 3 2 1
1 2 3 4 4 4 3 2 1
1 2 3 3 3 3 3 2 1
1 2 2 2 2 2 2 2 1
1 1 1 1 1 1 1 1 1

 (fn) 1 ⍝ should return 1 1⍴1
1

 (fn) 0 ⍝ should return 0 0⍴0

https://help.dyalog.com/latest/#Language/Primitive%20Functions/Minimum.htm
https://help.dyalog.com/latest/#Language/Primitive%20Functions/Reverse.htm
http://help.dyalog.com/latest/#Language/Primitive%20Operators/Outer%20Product.htm

7: Just Golfing Around 
Apologies to the code golfers out there, but this problem has nothing to do with code
golf! Instead, it addresses the problem of assigning places in a golf tournament. In
regular golf, lower scores place higher – the lowest score places first and the highest
score places last.

Write a function that:

takes a right argument that is a non-decreasing vector or scalar of strictly positive
integers, representing a set of scores.
returns a numeric vector of the place for each score; for duplicate scores, it returns
the average of the places they hold.

 Hint: This problem has several viable approaches including using key f⌸, or
partition X⊆Y, or interval index X⍸Y.

Examples
 (fn) 1 2 3 4 5
1 2 3 4 5

 (fn) 68 71 71 73
1 2.5 2.5 4

 (fn) 67 68 68 69 70 70 70 71 72
1 2.5 2.5 4 6 6 6 8 9

 (fn) 6⍴70
3.5 3.5 3.5 3.5 3.5 3.5

 (fn) ⍬ ⍝ this should return an empty vector

 (fn) 67 ⍝ should work with a scalar argument
1

https://aplwiki.com/wiki/Code_golf
https://help.dyalog.com/latest/#Language/Primitive%20Operators/Key.htm
https://help.dyalog.com/latest/#Language/Primitive%20Functions/Partition.htm
https://help.dyalog.com/latest/#Language/Primitive%20Functions/Interval%20Index.htm

8: Let's Split! 
Write a function that:

takes a right argument that is a non-empty character vector or scalar.
takes a left argument that is a non-empty character vector or scalar.
returns a 2-element vector of character vectors in which the right argument is split
immediately before the first occurence of any element in the left argument. If no left-
argument element occurs in the right argument, then the split should happen after
the last element of the right argument.

 Hint: The take X↑Y and drop X↓Y functions, or the partitioned enclose function X⊂Y,
could be helpful.

Examples
 'do' (fn) 'Hello World'
┌────┬───────┐
│Hell│o World│
└────┴───────┘

 'KEI' (fn) ⎕A ⍝ ⎕A is the system constant that contains the
characters A-Z
┌────┬──────────────────────┐
│ABCD│EFGHIJKLMNOPQRSTUVWXYZ│
└────┴──────────────────────┘

 (⌽⎕A) (fn) ⎕A
┌┬──────────────────────────┐
││ABCDEFGHIJKLMNOPQRSTUVWXYZ│
└┴──────────────────────────┘

 ⎕D (fn) ⎕A ⍝ ⎕D is the system constant that contains the characters
0-9
┌──────────────────────────┬┐
│ABCDEFGHIJKLMNOPQRSTUVWXYZ││
└──────────────────────────┴┘

 ⎕D (fn) 'Q'
┌─┬┐
│Q││
└─┴┘
 ⎕A (fn) 'Q'
┌┬─┐
││Q│
└┴─┘

https://help.dyalog.com/latest/#Language/Primitive%20Functions/Take.htm
https://help.dyalog.com/latest/#Language/Primitive%20Functions/Drop.htm
https://help.dyalog.com/latest/#Language/Primitive%20Functions/Partitioned%20Enclose.htm

9: An Average Window (or a Windowed
Average) 
Write a function that:

takes a right argument Y that is a numeric scalar or non-empty vector.
takes a left argument X that represents the number of neighboring elements on
either side of each element in Y.
returns a numeric vector or scalar where each element is the average (mean) of the
corresponding element in Y and its X neighbors on either side. If an element has
fewer than X neighbors on either side, replicate the first and last values as necessary
to make X neighbors.

 Hint: The Reduce N-Wise operator Xf/Y could help with solving this problem.

Examples

 0 (fn) 1 2 3 4 5 6 ⍝ 0 neighbors on each side
1 2 3 4 5 6

 1 (fn) 1 2 3 4 5 6 ⍝ 1 neighbors on each side
1.333333333 2 3 4 5 5.666666667

 2 (fn) 1 2 3 4 5 6 ⍝ 2 neighbors on each side
1.6 2.2 3 4 4.8 5.4

 6 (fn) 1 2 3 4 5 6
2.538461538 2.923076923 3.307692308 3.692307692 4.076923077 4.461538462

 10 (fn) 42
42

http://help.dyalog.com/latest/#Language/Primitive%20Operators/Reduce%20N%20Wise.htm

10: Separation Anxiety 
Write a function that:

takes a right argument that is a character vector or scalar representing a valid non-
negative integer.
takes a left argument that is a character scalar "separator" character.
returns a character vector that is a representation of the right argument formatted
such that the separator character is found between trailing groups of 3 digits.

Note that the number of digits in the character representation might exceed the
number of digits that can be represented as a 32-bit integer.

 Hint: The at operator @ could be helpful.

Examples
 ',' (fn)¨'1' '10' '100' '1000' '10000' '100000' '1000000'
'10000000' '100000000' '1000000000' '10000000000'
┌─┬──┬───┬─────┬──────┬───────┬─────────┬──────────┬───────────┬────────────

│1│10│100│1,000│10,000│100,000│1,000,000│10,000,000│100,000,000│1,000,000,00

└─┴──┴───┴─────┴──────┴───────┴─────────┴──────────┴───────────┴────────────

 '.' (fn) 60⍴⌽⎕D
987.654.321.098.765.432.109.876.543.210.987.654.321.098.765.432.109.876.543.

 '/' (fn) ,'9' ⍝ scalars and 1-element character vectors are
equivalent
9

http://help.dyalog.com/latest/#Language/Primitive%20Operators/At.htm

